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ABSTRACT 

We give a general  definition of the  topological pressure  Prop(f, S)  for 

cont inuous  real valued funct ions  f :  X --~ R on t rans i t ive  countable  s t a te  

Maxkov shif ts  ( X ,  S ) .  A variat ional  principle holds for funct ions  satisfy- 

ing a mild dis tor t ion property. We in t roduce  a new not ion of Z-recurrent  

funct ions.  Given any  such  funct ion  f ,  we show a general  m e t h o d  how 

to ob ta in  t ight  sequences  of invariant  probabi l i ty  measu res  suppor t ed  on 

periodic points  such tha t  a weak accumula t ion  point  It is an  equi l ibr ium 

s ta te  for f if and  only if f f-d# < oc .  We discuss some condit ions t ha t  

ensure  this  integrability. As an appl icat ion we ob ta in  the  Gauss  measu re  

as a weak limit of  measures  suppor ted  on periodic points.  
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0. I n t r o d u c t i o n  

Topological pressure, the variational principle and the existence of equilibrium 

states for continuous functions on shifts of finite type have been studied by Bowen 

[B] and Ruelle JR]. This work has been extended to countable state Markov shifts 

by Walters, Gurevic and Savchenko, and Sarig, [W2], [GS], [S1, $2]. Our work 

continues and also complements this study. We neither use the Ruelle-Perron 

Frobenius operator, nor do we assume HSlder continuity. This allows us to obtain 

a variational principle and a theory of equilibrium states for a wider class of 

functions. 

We give an outline of the paper and then compare our results with those of 

Gurevic-Savchenko and Sarig. 

Section 1 starts with two natural definitions of topological pressure for continu- 

ous functions on two-sided countable state Markov shifts, one via approximations 

from inside, the other more computational  via growth rates of weights of loops. 

Under the mild distortion condition Dn ( f ) /n  --+ 0 these two notions agree, which 

allows one to compute the pressure for such functions via loop-counting methods 

at any vertex a. 

The measure theoretical pressure is introduced in Section 2 and a variational 

principle is shown for flmctions f satisfying Dn(f ) /n  ~ O. 

Sections 3 and 4 contain the study of equilibrium states. We give a new 

definition of functions which are Z-recurrent at a vertex a. In the finite entropy 

case the function f = 0 is Z-recurrent if and only if the Markov shift is positive 

recurrent. Then we assign sequences of measures defined on periodic points that  

visit a to a function which is Z-recurrent at a. Now Z-recurrence (where we 

additionally assume Prop(f) < ~ and the distortion property supn D,~(f) < oc) 
ensures that  these sequences are tight, thus they have weak accumulation points. 

In Section 4 we study when such an accumulation point is an equilibrium state. 

Section 5 shows that  all the results easily carry over to the setting of one-sided 

Markov shifts. 

In Section 6 we briefly discuss the different distortion properties. In particular, 

we show that  HSlder continuous functions satisfy the condition supn Dn(f) < c~, 
and give an example for a non-HSlder continuous function where our results 

apply. 

In Section 7 we apply our main result about equilibrium states (Theorem 4.2) 

to the Gauss map. 

Finally, Section 8 discusses when it is possible to define the topological pressure 

by the growth rates of the weights of all periodic points instead of just considering 
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those that  visit a fixed vertex. 

In his work [$1, $2], Sarig considers H61der continuous functions on countable 

state Markov shifts. Hhlder continuous functions satisfy the distortion property 

sup n D n ( f )  < oc, Observation 6.3, and thus also D n ( f ) / n  -+ O. His notion of 

topological pressure coincides with ours for Hhlder continuous functions, as The- 

orem 1.9 shows. Sarig proved the Variational Principle for Hhlder continuous 

functions where the associated Ruelle-Perron-Frobenius operator maps the con- 

stant function 1 to a bounded function (i.e., II/:ii11~ < cx~). This might be a 

severe restriction. It  implies supxex f (x )  < cx~, thus excludes all functions f with 

infxex f (x )  > - c o  on Markov shifts given by a graph with unbounded in-degree, 

as the Bernoulli shift or, as an example with finite entropy, the Markov shift 

given by the graph with vertex set N and for each n E N there is an edge from n 

to n + 1 and an edge from n to 1. Since Hhlder continuity implies D n ( f ) / n  ~ O, 
Theorem 2.4 generalizes Sarig's Variational Principle. He showed that  an equilib- 

rium state (in a more general sense) exists for positive recurrent functions (and 

is actually unique). Sarig's results from IS1, $2] imply that  functions positive 

recurrent are also Z-recurrent in the sense of Definition 3.1. 

In [GS], Gurevic and Savchenko consider functions which depend only on the 

zero-coordinate. These are Hhlder continuous, but do not have to satisfy the 

condition I IE / I l I~  < co. Therefore their results do not follow from Sarig's results. 

They prove the Variational Principle for bounded functions. Their notion of 

positive recurrence coincides with that  of Sarig, but their notion of equilibrium 

states is different from Sarig's and from our definition. However, using [GS, 

Prop. 4.3] one can show that  an ergodic good measure (Definition 2.1) is an 

equilibrium state in the sense of Definition 3.1 iff it is an equilibrium state in the 

sense of [GS]. They show that  a function is positive recurrent iff an equilibrium 

state exists and in this case the equilibrium state is unique. 

The referee has pointed out that  Sarig improved the above-mentioned results 

to the case of functions with sup f < ~ ,  summable variations, and which not 

necessarily have to satisfy the condition I1£/1]1~ < ~ ,  [$3]. These new results 

then also imply the above-cited results of [GS]. 

We fix some notation. Let E be a countable set. Let E z be endowed with the 

product topology of the discrete topology on E. The left shift map a: E z --+ E z is 

the homeomorphism defined by (ax),~ := xn+l, n E Z for all x = (xn)~cz E E z. 

Given a subset X of E z, a point x -- (Xn)nEZ G X and integers - ~  < n < m < 

let x[n, m] and x[n, m + 1) denote the block Xn . . . . .  xm and let ~[xn . . . . .  x,~] 

denote the cylinder set {y e Xly[n, m] -- x[n, m]}. The induced topology on X is 
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generated by the cylinder sets. If  X is shift invariant, a ( X )  = X ,  then (X,  a l x  ) 
is called a subshift. We denote the points of period n in X by Peru(S) := 

{x c x I s ~ x  = x}. 

Let G = (V, E) be a graph with a countable vertex set V and a countable set 

of directed edges E.  We consider only graphs where each vertex has at least one 

out-going and one in-coming edge. Let i: E --+ V and t: E --+ V denote the initial 

and terminal vertex maps. The M a r k o v  shif t  (X, S) defined by G is a subshift 

of (E z, a) where 

.Y :~- {X ~- (Xn)nEZ E EZi t (xn)  = i(Xn+l) for all n E Z}. 

That  means X is the set of bi-infinite walks on the directed edges of the graph G, 

and S is the restricted shift map. We want to emphasize here that  we consider all 

graphs with countable vertex and edge set, and not only graphs where between 

two vertices there is at most one edge. So we definitely allow parallel edges. 

In this sense our approach is more general than that  of Sarig, and Gurevic and 

Savehenko. 

Note that  X is compact iff G is a finite graph iff (X, S) is a shift of finite 

type (SFT). Transitivity of S means irreducibility of G, that  is for every pair of 

vertices a and ~ of G there is a path  from a to ~. Only transitive Markov shifts 

are considered in this paper. We say that  a block w E E k, k > 1, is an S-block or 

a pa th  in S if there is a point x E X with x[1, k] = w. Let [w I denote the length 

k of the block w. 

Remark  0.1: We consider loop counting in different matrix presentations of a 

Markov shift; later, in Remark 3.4, we shall do the same for the notion of positive 

recurrence. 

Let G = (V, E)  be a countable directed graph defining a transitive Markov 

shift X = {x = (Xn)~ez E EZit(xn)  = i(Xn+l) for all n E Z}. Let A be the 

matrix indexed with the vertex set V and Aa,a' = #{e  E Eli(e) = a, t(e) = a'}. 
Note that  Aa, a, = (x) is a l l o w e d .  

Now define a 0-1 matrix B, indexed by the edge set E,  by B~,e, = 1 iff t(e) = 

i(e'). Let 

X '  := {X'  = (Xn)neZ'  E E ziBx' ,x:+l  = 1 for all n E Z}. 

Note that  obviously X '  = X.  Let H be the graph defined by the matr ix  B, i.e., 

the vertex set of H is VH = E and for e, e ~ E VH there is an edge from vertex e 

to vertex e' iff Be ,  e, =- 1. Note that  H has no parallel edges. 
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We have that  B~,¢ = # { x  • Pern(X)lx0 = e}. Thus Be~ e <_ An,a where 

a = i(e) is the initial vertex of the edge e in the graph G. Now fix a loop u 

in G beginning with edge e. Then to a loop w in G of length n at vertex a 

assign the point x • Per~+l~l(X ) with x[0, lu[) = u, x[[u[, [u[ + n) = w. This 

assignment is injective and shows Aa~a _< u¢,¢~+[~I. Thus timsup~ 1/nlogA2,a = 
limsuPn 1/nlogB2,e. Since limsuPn 1/nlogB~,¢ is independent of e, [G], thus 

also lim SUPn 1/n log An,a is independent of a. Note that A~,~, = ~ for some a, 

a ~ • V implies lim SUpn 1/n log An a = oo. 

We recall some basic facts about the pressure for continuous functions on 

compact subshifts. 

Given a space X with a selfmap S and a function f :  X --+ R let 

n--1 

SnIX:=~-~I(S ix ) ,  h e N ,  x e X .  
i----0 

Suppose that (X, S) is a compact subshift and f :  X -+ R continuous. Let/3 

be the zero-partition, i.e., the partition into the sets [i]o := {x • X[xo = i}. 
Let ~(n) := /3 V S - l ~  V S-2/3 V . . .  V S-(~-~)~. Let W~(f ,S)  = Wn(f) := 

~-~SeZ(n) sup~eB exp(Snfx). The sequence Wn(f) is submultiplicative, thus P(f)  
:= l im~_~(1 /n ) log  Wn(f) exists and agrees with infn(1/n)log Wn(f). 

The number P(f )  E R is the topological pressure of f .  

The above definition is equivalent to a more general one via spanning sets [Wl], 

which can be used whenever X is compact metric and S, f are both continuous. 

But the above suffices for our purposes. 

1. Topo log ica l  p r e s s u r e  

For continuous functions f on transitive Markov shifts we define the inner pres- 

sure Pin(I) by approximations from inside and the topological pressure Prop(f) 
by counting weights of loops at fixed vertices. These two notions agree if the 

function satisfies a mild distortion property. 

Let (X, S) be a transitive Markov shift given by a countable directed graph 

G = (V, E)  and f :  X --~ R a continuous function. 

Definition 1.1: The inner pressure of f is 

Pin(f, S) := sup{P(f ly) l (Y,  Sly ) is a transitive SFT inside (X, S)}. 

One important question is when this quantity can be computed by loop- 

counting methods, i.e., when Pin(f) = Prop(f), where the latter is defined as 

follows. Recall that i: E -+ V denotes the initial vertex map. 
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For a E V and n • N let P(n,a)  := {x • Per~(S)li(xo ) = a}. 

e x p ( S J x )  

xEP(n,a) 

where Zn(f ,  S, a) := 0 if P(n, a) = O. The topological pressure of f is 

Prop(f, S) := sup lim sup 1 .  log Zn(f ,  S, a). 
aE V n-+oe n 

If S is clear from the context we simply write P ~ ( f ) ,  Z~(f ,a) ,  and Prop(f), 
respectively. Using the notation from Remark 0.1, in the case f = 0 we have 

Zn(f ,  S, a) = An a and thus 

Prop(O) = lim sup -1 logdn,a = limsup 1 log Be~ 
n n n n 

by Remark 0.1. Since limsup~ 1/nlogBn¢ = sup{htop(Y)lY a SFT inside X'},  

[G], and X I = X, we obtain Prop(O) -- Pin(0). For general continuous functions 

f we will show Prop(f) = P~,(f) (and in fact this number can be calculated 

by considering loops at any vertex a) whenever f satisfies the weak distortion 

property Dn ( f ) / n  --+ O, where the distortions are defined as follows. 

Definition 1.3: The nth distortion of f is 

On = On( f )  = Dn(f ,  S) := sup ISnfx - Snfyl  • [0, oe]. 
x,yCX,x[O,n)=y[O,n) 

Remark 1.4: In general all the distortions may be infinite. However, if (X, S) is 

a SFT then f is bounded and thus all Dn(f)  are finite. Moreover, D , ( f ) / n  --+ 0 
since f is uniformly continuous (see Section 6). 

The distortions allow one to compare values of the functions S , f  on certain 

periodic points. This will be used repeatedly, for example to prove weak super- 

multiplicativity properties of the weights Z ,  (f,  a) as in Lemma 1.6. 

LEMMA 1.5: Let nl ,n2 . . . .  ,nk • N. For each tuple ( x l , . . . , X  k) • P(nl ,a)  x 

P(n2, a) x - . - x  P(nk, a) there is a unique point ¢ ( x l , . . . ,  x k) E P (n l  + ' . . + n k ,  a) 

with ¢(x 1 . . . .  , xk)[0, rtl - [- ' ' ' -~-  nk) = xl[0, nl)X2[0, n2)""" xk[O, nk) and it is true 

that 
k . . . .  , xk) k 

i~=lSn~fX i - Sn~+...+nkf¢(x 1 ~_ ~ Dn~(f).  
_ i=l 

Proof: By the triangle inequality the left hand side is bounded by 

Eki=l ISn, fX  i - Sn, f S n , + ' " + n , - I ¢ ( x l , . . . ,  xk)]. Since 

( s  T M +  ¢ ( x  . . . .  , xk))[0 ,  = x 
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the i th  term of this sum is bounded by D,~ (f) .  I 

LEMMA 1.6: Let a be a vertex. Then 

Zn(f ,a)  k <_ Znk(f ,a)" exp(k .  Dn(f)),  

for all k E N and all n E N with P(n, a) ¢ O. 

Proof'. Note tha t  P(n,a)  ¢ 0 ensures Z~k(f,a) > 0, thus the lemma holds 

trivially if D~ ( f )  -- oo (which can happen only in the non-compact  case). Lemma 

1.5 applied with ni = n, 1 < i < k, shows that  

k / \ 
e x p ( E S n f x i )  ~ exp(Sknf ¢(xl . . . .  , xk) ) . eXp(]g . On(f)) .  

k .i= l / ] 

Since ¢ is injective the result follows by summat ion  over all (x I . . . .  , x  k) E 

P(n, a) k. I 

First we consider the SFT case. Count ing weights of loops at a fixed vertex 

gives a formula as well as lower bounds for the pressure. 

LEMMA 1.7: Let (X, S) be a transitive SFT with period p defined by a finite 

graph G. Let f: X -+ N be continuous and a a vertex of G. Then 

(a) P ( f ) =  lira l logZ,~p(f,a), 
n - - ~  ~'~p 

(b) p(f)>_ _llogZ~,(f,a) D~(f)  f o r a l l n E N .  
n n 

Note that (a) implies P ( f )  = Prop(f) in the sense of Definition 1.2. 

Proo~ (a) Let /3(n) and I4~( f )  be defined as at the end of Section 0. Since 

# ( P ( n ,  a) fq B) <_ 1 for all B E/3(~), we obtain 

Zn(f ,a)  ~ E supexp(Snfx)  = Wn(f)  
BEd(n) x E B  

for all n. This shows tha t  l i m s u p ( 1 / n ) l o g Z ~ ( f ,  a) <_ P( f ) .  On the other hand, 

there is an N such tha t  for every B E/~(np) there is a point  zB E P ( n p + N p ,  a) 

such tha t  SizB E B for some 0 _< i < Np. Any such assignment is at most  Np to 

1. For every x E B we have ISnpfx - S~p+NpfzBI <_ N p .  sup Ifl + D~v(f), thus 

Wnp(f) <- E exp(Snp+NpfZB + N p . s u p  If] + Dnp(f)) 
BE/~(np) 

< Np.  Znp+Np(f, a). exp(Np • sup I f I +  D~p(f)). 
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Thus P ( f ) = lim(1/ np) log Wnp ( f ) <_ lim inf (1/ np) log Znp ( f , a ) , since Dn ( f ) / n 

--+ 0 by Remark 1.4. Altogether we have shown that  l im(1/np) logZnp( f ,a )  

exists and equals P ( f ) .  

(b) This is trivial if P(n,  a) is empty. If  P(n,  a) ¢ 0 then Lemma 1.6 shows 

that  ( l / n ) l o g Z n  - D n / n  <_ ( l i nk ) t ogZnk  for all k. With k = mp, m --+ oc the 

latter approaches P ( f )  as shown in (a). | 

Now we return to the general case of countable state Markov shifts. 

PROPOSITION 1.8: Let (X, S) be a transitive Markov shift of period p given by 

a graph G. Let f:  X -+ 11~ be continuous and a a vertex of G. Then 

(a) P/n ( f )  -< lim inf 1 log Znp (f,  a), 
n-+oe np 

(b) P i n ( f ) +  Dn(f_~) >_ l l ogZn( f ,a  ) fora l ln .  
n n 

Note that (a) implies Pin(f)  <_ Prop(f) in the sense of Detlnition 1.2. 

Proof: (a) Let ~ > 0 and choose a SFT Y C X with period p which is given 

by a subgraph of G that  contains a and such that  P ( f l Y )  >- Pin(f)  - e if 

Pin(f)  < oo and such that  P ( f l Y )  -> 1/e if Pin( f )  = oc. Then, by Lemma 

1.7a, P ( f l Y )  = lim(1/np) log Znp(flY, a) <_ lim inf(1/np) log Znp(f ,  a), the latter 

since Znp(f lY,  a) < Znp(f,  a) for all n. With ¢ --+ 0 the result follows. 

(5) We may assume that  On( f )  < oc and P(n ,a )  7 £ 0, since otherwise the 

inequality is trivial. First assume that  Zn( f ,  a) < oo. Given 0 < 3' < 1 choose 

a SFT Y C X given by a large subgraph of G that  contains a and satisfies 

Z n ( f l r , a )  >_ 3'" Zn( f ,a) .  By Lemma 1.75 

Pin(f)-+ O n ( f )  >_ p(f]y)_~ On( f lY )  >_ l l ogZn( f [y ,a  ) >_ logT + l  logZn( f ,a ) .  
n n n n n 

The result follows with 3' --+ 1. 

If Zn( f ,  a) = oo then choose Y such that  Zn( f[y ,  a) _> 1/% Lemma 1.7 implies 

that  Pin(f)  + D n ( f ) / n  >_ - ( l / n )  log'),; the result follows with 3 ~ --+ 0. 1 

The main result of this section shows that  the pressure of f can be computed 

by counting the weights of loops at any fixed vertex whenever f satisfies a weak 

distortion property. 

THEOREM 1.9: Let (X, S) be a transitive Markov shift of period p given by a 

graph G. Let f:  X --~ N be continuous with D n ( f ) / n  -~ O. Then 

Prop(f) = Pin(f)  = lim --1 " log Znp ( f , a ) = lim sup l log Zn ( f , a ) 
n--~oe np n-roe n 
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for every vertex a of G. 

Proof: If Pin(f) = cx~ then Proposition 1.8a shows that  

cx~ = lim 1/np. lOgZnp(f,a ). 
n --+ c2~ 

Now suppose that  Pin(f) < oc. Then by Proposition 1.8 and Dn(f) /n  --+ 0 we 

obtain 

Pin(f) <- lim inf 1 log Znp(f, a) 
n-~oo rtp 

1 
< lim s u p -  logZnp(f,a) <_ Pin(f). 

n --+ c~ rtp 

Thus Pin(f) = limn__+~o(1/np) . log Znp(f, a) = limsuPn__+c~(1/n ) log Zn(f, a) for 

all a, the latter since Zn (f,  a) = 0 if n is not a multiple of p. By definition this 

implies Pin(f) = Prop(f). | 

Remark 1.10: Given a vertex a and n, m E N such that  P(n,a) ~ 0, 
P(m, a) ¢ O, then 

Zn(f,a)" Zm(f,a) < Zn+m(f,a)" exp(Dn(f) + Din(f)). 

The proof of Lemma 3.7 in Section 3 shows the argument. In the case 

Dn(f) /n  --+ 0 this weak supermultiplicativity can be used to give a direct proof 

that  1/np. log Znp(f, a) is a convergent sequence (where p is the period of the 

Markov shift). However, the above approximation arguments are still needed to 

identify the limit. 

2. The  Variational Principle  

In this section we state and prove the Variational Principle (Theorem 2.4) for 

continuous functions f with Dn(f) /n  -+ O. This extends results of [G], [GS], 

[S1]. At the end of this section we supply a variation of the proof, more in the 

spirit of P. Walters'  proof for compact spaces [W1, Thm. 8.6+Thm. 9.10]. 

Definition 2.1: Let (X ,S)  be a transitive Markov shift and f :  X --+ • a 

continuous function. A shift invariant Borel probability measure # on X is a 

good measure for f if f f - d #  < oc. The measure theoretical pressure of f is 

Pmeasur~(f, S) := sup{h~(S) + f fdpllt is a good measure for f}. J 
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Remark 2.2: The quantity h~ ( S) + f f d# would still make sense if f f -  dp = oc 
but h~(S) + f f + d #  < ec. However, in this case h~(S) + f f d p  = - o c ,  i.e., such 

measures do not contribute to Pmeasu~e(f, S). 

Remark 2.3: The standard Variational Principle for compact spaces implies 

immediately that Pin(f) < Pmea~( f ) .  

THEOREM 2.4 (Variational Principle): Let (X, S) be a transitive Markou shift 
and let f: X --+ R be a continuous function with Dn(f)/n --+ O. Then 

Ptop(f) = Pin(f) = Pm~asu~(f). 

Proof: We give a proof in the mixing case. The general case, where S has 

a period p E N, follows by considering arithmetic progressions n = mp. By 

Theorem 1.9 and Remark 2.3 we have Prop(f) = Pin(f) <_ Pineapple(f), thus it 

remains to show that P,~as~e(f) < Prop(f). We may assume that Prop(f) < oe. 
Let p be a good measure for f .  

For N E N let fN: X -~ R be defined by fN(x) := min(f(x),N). Since 

f f - d #  < ee we have f fNd# --+ f fd# by monotone convergence, thus it suffices 

to show that P 

h,(S) + J fNdp < Prop(f) for all N e N. 

Fix N E N. Identify the set E of edges with N; this induces an ordering on 

E. We first choose a suitable generating sequence c~k, k E N, of finite partitions 

of X. Fix a sequence (rk)kEN of integers with rk > k for all k and such that 

#({x E Xlxo > rk}) • log(k + 2) --+ 0. Let c~k be the partition of X into the sets 

[ a ] 0 : = { x • X I x  0 = a }  f o r d < k ,  

D k : = { x • X ] k < x o < _ r k }  and 

c k :  = {x • xl o > 

Thus ak is a partition with k + 2 atoms and, by the choice of the sequence rk, 

we have 

lim #(Ck). log(#c~k) = 0. 
k--+oo 

Since the sequence ak, k • N is generating, h,(S) = limk--,oo h , (ak ,  S). Now fix k 

for the moment and let a := ak. Let c~(n) := a V S - l a  V S - 2 a  V . . .  V s - ( n - 1 ) a .  

For P • c~(n) let g(n,P) = sup{SnfNXlX • P}. Then g(n,P) < oc since 

s u p f N < _ N < o c .  ForA,  B • ~ l e t  

a(n, A, B) = {P • a(n)lP is contained in d N S-(n-1)B}.  
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By S-invariance of tt we obtain 

-- nfNdp Nd# = n 
1 

< -- E E g(n,P).p(P) 
n 

A,BEo~ PEo~(n,A,B) 

= 1_ E #(A N S-(n-1)/~) • E g(1~, P)- p(PIA M S - ( n - 1 ) B ) .  
it 

A,BEa PCa(n,A,B) 

Note that 0 _< H , ( a  V S-(n-1)a)  <_ 21og(#a)  implies 

lira 1-Hu(a(n)) = lira 1 H , ( a ( n ) l a  v s-(n-1)a). 
n-+c~ ft n--+oo rt 

This gives 

hu(ak, S) + f fNd# 

= ~-~lim l [ H , ( c ~ ( n ) ) +  f SnfNdp] 

_< limsup 1 E #(A n s-(n-1)B) • E #(PIA CI s - ( n - 1 ) e )  
n---~oo 1~, 

A,BEa PEo~(n,A,B) 

• [- logp(P[A M S-(n-1)B) + g(n, P)] 

n-+oo It A,BEa PEa(n,A,B) 

The last estimate holds by [W1, Lemma 9.9], which states that given real num- 
k k bets al . . . . .  ak and Pi >_ 0 with ~i=lPi = 1, then ~-~4=lPi(ai - logpi) _< 

k log(~ i=  1 exp(ai)). 
We estimate the sequences ( l /n)  log(~pe~(~,A,B) exp(g(n, P))) .  
First consider the ease that A = Ck or B = Ck. The rough estimate f u  _< N 

gives 

Thus 

1 
lira sup - 

PEa(n,A,B) 

exp(g(n' P ) ) ) - <  l l°g( E exp(n • N)) 
PEc~(n,A,B) 

= 1 log(#a(n ,  A, B)-  exp(n • N)) 
n 

_< log(# ) + N. 

E P(ANS-(n-1)B)'I°g( E exp(g(n'P))) 
A,BEa,A=Ck or B=C~ PEa(n,A,B) 

+ X). 
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In the case that  A # Ck and B # Ck, let d be a fixed vertex of the graph G. 

By Theorem 1.9 we know Prop(f) - - l imn(1/n) log  Zn(f, d). 
Fix M so that Dn(f) < oo for all n >_ M. For every edge a < rk let w(a) 

be a path starting in vertex d and let u(a) be a path ending in vertex d such 

that w(a)au(a) is a path. Since S is mixing, we may assume that for some 

m > M these paths have length m = Iw(a)l = [u(a)l for all a _< rk. Since 

Din(f)  < co, there is some Mk such that ISrnfXl <_ Mk whenever x[0, m) = w(a) 
or x[0, m) = u(a) for some a <_ rk. 

Now consider A ,B  E a w i t h A #  Ck a n d B #  Ck. L e t e  > 0 a n d  n_> M. 

For each P E a(n,  A, B) choose a point x P • P with g(n, P) < SnfNX P + 8. 
Then in particular g(n, P) <_ Snfx p + ~. Let w P = xP[O, n), a = x P and b -- 

P N o w  x P Xn_ p • P implies a, b < rk and thus w(a)wPu(b) is a loop of length 

n + 2m at vertex d. Let yP • P(n + 2m, d) with yP[O, n + 2m) = w(a)wPu(b). 
Since (SmyP)[O,n) = xP[O,n) we get Snf(X P) < Snf(Srny P) Jr-Dn(f). Since 

yP[O,m) = w(a) we get S,ff(y P) >_ -Mk and since (Sn+"~yP)[O,m) = u(b) we 

get S,~f(S'~+my P) >_ -Mk. Thus exp(SnfxP) < exp(Sn+2,~fyP + Dn(f) +2Mk).  

Thus 

E expg(n, P) < E exp(Snf(xP) + ¢) 
PEa(n,A,B) PEo~(n,A,B) 

<- E exp(Sn+2mf(YP) + Dn(f) + 2Mk + e) 
PEo~(n,A,B) 

= exp(Dn(f)  + 2Mk + e). E exp(Sn+2mfYP) 
PEc~(n,A,B) 

< exp(Dn(f) + 2Mk + e)Zn+2m(f, d) 

and (On(f) + 2Mk + ~)/n --+ 0 implies 

limnsup 1 l°g ( n  E expg(n,P)) <linmllogZn+2m(f,d)=Ptop(f),n 
PCc~(n,A,B) 

the latter by Theorem 1.9. Combining the above estimates gives 

h~(ak, S) + f fNd# 

1 ( ) 
<_ l i m s u p -  E "(AC~S-(n-~IB)'I°g ~ expg(n ,P)  

n n--.~eo A,BEa PEa(n,A,B) 

<_ ~_, , (A  n S-(~-~)B). P~oAf) + 2~(Ck) • (log(#~k) + X) 
A,BEo~k-{Ck } 

<_ Pto~(I) + 2~(ck) . (log(#~k) + X). 
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Note that  l i m k _ ~  2p(Ck). ( log(#c~k)+N) = 0 by construction, thus with k --+ co 

the above yields h~(S)+ f fNd# <_ Prop(f) and the Variational Principle is 

proved. | 

Remark  2.5: We outline an alternative proof, more in the spirit of P. Walters'  

proof of the Variational Principle for compact spaces. Now the distortions will 

enter the picture just at the very last step. It  makes one believe that  the condition 

Dn(f)/n --+ 0 is quite natural  for a Variational Principle to hold; on the other 

hand, it makes it hard to speculate about  possible weakenings of this condition. 

By Theorem 1.9 and Remark 2.3 it suffices to show Pme~s~re(f, S) <_ Pin(f, S). 
1. Prove this for functions f which depend only on the zero coordinate. This 

can be done as in the proof of Theorem 2.4, but the estimates simplify since all 

the Dn(f) are zero. 

2. Show P,~eas~re(f, S) < Pin(f, S) + n l ( f )  for any continuous function f .  If  

n l ( f )  -- co this is trivial. If  DI(I) < oc then h(x) := sup{fy]yo -- Xo} defines 

a function h: X -+ R which depends only on the zero coordinate and satisfies 

f <_ h <_ f + D l ( f ) .  Thus Pin(h,S) < Pin(f ,S)+Dl(f) ,  [Wl, Thm. 9.7] and an 

S-invariant measure is good for f iff it is good for h. Thus, by f _< h and step 1 

we get 

Pm~as~re(f, S) <_ Pmea,ur~(h, S) 

= Pin(h, S) 

<<- Pin(f, S) + Dl(f). 

3. Now apply the above to the shift (X, S n) endowed with the function Snf, 
and link the occurring quantities to those for S and f (this is done in Lemma 

2.7 at the end of this section). Thus the proof proceeds as follows: 

Pm~a~,,,'~(f, S) < 1P~a~u~(S,~f, S n) by Lemma 2.7a 
?'t 
1 1 

< -Pin(Snf, S n) + DI(Snf, S n) by step 2 
n 

<_ Pin(f,S) + 1Dn(f ,S)  

by Lemma 2.7b and since Dn(f, S) = D~(SnI, sn). Now Dn(.f, S)/n -+ 0 implies 

Pme~,,,'~(f, S) <_ Pin(f, S), which finishes the outline of the alternative proof. 

Remark 2.6: One might wonder if Step 1 is a simple consequence of Gurevic and 

Savchenko's Variational Principle for bounded functions which depend only on 

the zero coordinate [GS]. This is not so, since Piov(f) = oc for bounded functions 
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f on a Markov shift with infinite Gurevic entropy. Thus one cannot approximate 

a function f _< 0 with i n f f  = - c o  and Ptop(f) < oz by bounded functions 

and deduce the result. Also Sarig's result is not strong enough, because he uses 

the condition [[/:fl[[~ < cx~. This implies sup~ex f(x)  < c~ and excludes all 

functions f with inf~ex f(x)  > - o c  on a Markov shift given by a graph with 

unbounded in-degree. 

Finally we state and prove the lemma used in the last step above. 

LEMMA 2.7: 

(a) n.  Pm~as~r~(f, S) < P m ~ r e ( S n f ,  S~), 
(b) n.  Pin(f, S) ~_ Pin(,..qnf, sn). 

Proof: (a) Let # be a good measure for f on the Markov shift (X, S). Then # is 

also sn-invariant.  Obviously Sn f  + > (Snf) +. Replace f by - f ;  now ( - f ) +  = 

f -  yields Sn( f - )  >_ ( - S n f )  + = ( S J ) - .  Thus f ( Sn f ) -d t t  <_ f Sn( f - )dt t  = 
n • f f - d #  < c~ and p is a good measure for Sn f  on the Markov shift (X, sn) .  

Since f _> - f -  and f f - d p  < ~ we get n .  f fd#  = f Snfd#. This and 

n.  h,(S) = h , (S  n) show that  n.  (h~(S) + f fd#) <_ Pm¢~r¢(S,~f, sn). 

(b) First note that  

Pin(f, S) - -sup{P(f[y ,  SIv)IY c X, Y compact and S Y  -- S}. 

Now let Y C X be compact with sn]( * = Y. Let Z = Y U S Y  U .. .  t3 S'~-IY. 
Then S Z  = Z and Z is compact. Thus Pto;(Snf[v,sn]v) < Ptop(Snf[z, Sn[z) 
= n'Ptop(f]z, Stz), [Wl, Thm. 9.8]. By the first remark, which holds for Snf,  S ~ 
as well, the result follows. | 

3. Z - r e c u r r e n c e  

Suppose f is a continuous function on a transitive Markov shift. We define 

and discuss the notion of Z-recurrence of f at a vertex a. In the case f = 

O, Prop(f) < o¢:) this turns out to be equivalent to the notion of positive recurrent 

Markov shifts. Then we assign sequences of measures to a function that  is Z- 

recurrent at a vertex a and satisfies Prop(f) < cx) and sup n Dn(f) < cx~. These 

measures will be supported on periodic points that  visit a and Z-recurrence of f 

ensures the existence of weak accumulation points (any such sequence is shown 

to be tight). In the following section we give conditions which imply that  such 

an accumulation point has to be an equilibrium state. 
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Throughou t  this section (X, S) is a transitive Markov shift given by a countable 

directed graph G = (V, E)  with initial vertex map  i: E --+ V, and f :  X --* N is a 

continuous function. 

For any vertex a and n > 1 we defin P(n,a) = {x C Pern(S)li(xo) = a} and 

Z~(f,a) = ~-~xeP( .... ) exp(S, fx) .  Now let 

P*(n,a) = {x e P(n,a)[i(xk) ¢ a for 1 < k < n -  1} and 

Z*( f ,a )= E exp(Snfx). 
xEP*(n,a) 

Definition 3.1: The continuous function f is Z-recurrent  at a vertex a if 

Zn(f, a) < oc) for all n and 

x--" Z,~(f,a) 
Z,~(f,a) < oo, 

where Z~(f ,a)/Zn(f ,a)  := 0 if Zn(f,a) = 0 (i.e., if P(n,a) = 0). 

Observation 3.2: Later  we will mainly consider functions f with Prop(f) < oo 
and D,( f )  < oc for a l l n .  In this case Zn(f,a) < oo for a l l n a n d a l l a  C V, 

which can be seen as follows. Fix n. The condition Prop(f) < oo implies tha t  

there is a k with Znk(f,a) < oo. If P(n,a) = 0 then Zn(f,a) = 0 by definition, 

and i fP(n,a)  ¢ 0 then Zn(f,a) < ec by Lemma 1.6. 

Z-recurrence holds trivially in some impor tan t  special cases. For example, 

suppose tha t  the lengths of the first re turn loops at a are bounded (think of the 

Bernoulli shift given by a graph with a single vertex a). Then  any function f 

with sup,~ D,~(f) < oo and Ptop(f) < OO is Z-recurrent  at a just  because the 

Z* ( f  , a) vanish eventually. 

QUESTION 3.3: Suppose that f is Z-recurrent at some vertex. Is f Z-recurrent 
at every vertex? 

Remark 3.4: We indicate tha t  this holds for the function f = 0 under the hy- 

pothesis Prop(f) < oc since in this case Definition 3.1 coincides with the definition 

of positive recurrent Markov shifts. But  first we give an argument  tha t  positive 

recurrence does not depend on the matr ix  presentat ion chosen for the Markov 

shift. We give the argument  for the mixing case; the general transit ive case then 

follows by using [K, Lemma 7.1.36]. 

We use the notat ion from Remark  0.1. Then Z~ = Z~(O, a) = A~, a and thus 

Ptop(O) = lira s u p ( l / n )  log Z~ = lim s u p ( l / n )  log dna,a = lira s u p ( l / n )  log Bene. 



236 D. FIEBIG, U.-R. FIEBIG AND M. YURI Isr. J. Math. 

Let A > 0 so tha t  Prop(O) = logA. We show tha t  A is positive recurrent iff B is 

positive recurrent. For that ,  define the V x VH matr ix  R with entries 0 or 1 by 

Ra,e -- 1 iff i(e) = a in the graph G. Define the VH × V matr ix  S with entries 0 

or 1 by Se.a = 1 iff t(e) = a. Then 

(RS)a,a, -- E Ra,eSe,a, = # { e  e Villi(e) = a , t (e)  = a'} ---- Aa,~,, 
eEVH 

(sR)o,o, = Z Se,oRo,o, = Rt(e),o, = 
aEV 

Thus we have shown R S  = A and S R  = B.  Suppose tha t  B is positive recurrent. 

Then,  by [K, Thm.  7.1.3 (d)], A < c~ and there are vectors l, r indexed by VH with 

l, r > 0, l • r < oo and B r  = )w, IB  = Al. Since r > 0 and R is a 0-1 matr ix  with 

no rows zero, we obtain R r  > 0 and A ( R r )  = R S R r  = R B r  = R A t  = A(Rr) ,  

and since 1 > 0 and S is a 0-1 matr ix  with no columns zero we obtain lS  > 0 and 

( l S ) A  = l S R S  = l B S  = )~(IS). Furthermore (lS) . (Rr)  = I S R r  = IBr  = A. lr < 

c~. Now [K, Lemma 7.1.16] shows tha t  A is recurrent, and thus [K, Thm.  7.1.3 

(d)] implies tha t  A is positive recurrent. The argument  is symmetr ic  in A and 

8 ,  since it does not  use the fact tha t  B is a 0-1 matrix.  Thus  we have shown A 

is positive recurrent iff B is positive recurrent. 

Now we show tha t  A is positive recurrent iff f = 0 is Z-recurrent at  any vertex 

a E V. If  A is positive recurrent, then [K, Thm.  7.1.3 (f)] shows tha t  for some 

c > 0 and all large n we have Zn(O,a) = n >_ An. Aa, a c .  Thus, for N large, 

~ n = N  n .  Z * / Z n  < ~n°°=N n/c"  Zn/k - n  < ~ and, since all Zn(O, a) are finite, the 

function f = 0 is Z-recurrent  at a. 

We give an  argument  for the converse (however, there should be a more el- 

ementary  one). If  ~-]n~=ln. Z n / Z n  ~ ~ at some vertex a, then Theorem 4.2 

shows the existence of an equilibrium state for f = 0, which is now a measure of 

maximal  entropy for the shift S. Thus since X ~ = X, B is positive recurrent [G, 

see also K, Prop. 7.2.13] and thus, as seen above, A is positive recurrent. | 

QUESTION 3.5: IS there an elementary proo f  that  in the finite entropy case the 

function f = 0 is Z-recurrent iff the Markov shift is positive recurrent? 

Under the assumption Z n ( f ,  a) < oc for all n we are going to define sequences 

of invariant probabili ty measures suppor ted  on periodic points. These periodic 

points are built from suitable subsets of first re turn loops at a. I t  will often be 

possible to consider the set of all first re turn loops (Theorem 4.2.d, the Gauss 

map  example in Section 7). However, considering subsets of first re turn loops will 

have certain advantages in future applications. For example, it shows tha t  the 
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statement of Theorem 4.2.b is non-void, since the assumptions of this theorem 

can always be satisfied with suitable finite subsets L~ of first return loops and 

then the associated measures are trivially good measures. That  is the reason why 

we deal with the extra complication of considering subsets of first return loops. 

We first describe the abstract setup. 

Let x E P*(k, a). Then we say that x[0, k) is a first return loop at a of length 

k. Let L be an arbitrary subset of the set of all first return loops at a. Define 

P (n ,a ,L )  := {x e P(n,a)[x[O,n)= Wl . . . .  w~,wi e L, 1 < i < r} 

Z~,L(I, a ) :  = E exp(Snfx) .  
xEP(n,a,L) 

and 

Whenever a function f and a vertex a have been fixed, then we also write 

Zn,L, Zn, and Z~ where these are meant to be flmctions of f and a as defined 

above. 

Let 5x denote the probability measure with ~.(A) = 1 iff x C A, for every Borel 

set A. 

Definition 3.6: Suppose f is a function with Zn(f ,  a) < oc for all n and L a set 

of first return loops at vertex a. Then, for every n E N with P(n,  a, L) ~ ~, we 

define probability measures Yn : /]n,L and p~ = Pn,L by 

1 
u~ : = Z~,L E exp(S~fx ) .  5, 

xCP(n,a,L) 

1 n -1  
# n  : = --  E Si un" 

n 
/=o 

and 

Note that S~u~(A) = u,~(A) for every Borel set A and thus S#n = #n, i.e., 

t tn is shift invariant. 

We supply a little arithmetic for the Z~,L which will be used to prove the next 

lemma. 

LEMMA 3.7: Suppose that Zn( f ,a)  < oo for all n and C := exp(supn Dn(f) )  < 

oo. Let L be a subset of the first return loops at a. Then 

Zn,  L • Zk,  L ~ C 2 • Zn+k,  L for all n, k. 

Proof: Suppose P(n, a, L) ¢ 0 and P(k, a, L) ¢ 0 (otherwise the lemma holds 

trivially). Then Lemma 1.5 applied with nl = n, n2 = k shows exp(Ei2=~ Snfx ~) 
<_ exp(Sn+kf¢(x 1, x~)) . C s. Since ¢ restricted to P(n, a, L) x P(k,  a, L) is an 
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injective m a p  into P(n + k,a,L),  the result follows by s u m m a t i o n  over all 

(x l, x 2) E P(n, a, L) x P(k, a, L). I 

The following es t imate  for the t ,~-measures of certain cylinder sets will be used 

repeatedly.  

LEMMA 3.8: Suppose that Zn(f,  a) < oo for all n and C :-- exp(suPn Dn(f) )  < 

oo. Let k <<_ n. Suppose that L is a set of first return loops at a with P(n, a, L) 7£ 

0, P(k, a, L) 7 ~ (~, and Zk,n > 7Zk for some 7 > O. Let Vn = ~n,L be the measure  

from Definition 3.6. Then for any set A = {xix[0, k) E K }  where K denotes 

some subset of the loops of length k at a we have the estimate 

~ ( S - J A )  -_ ,~ ,L(S- iA)  

_< 7 - 1 C  4. Z [  1. ~ exp(Skfx) for all 0 <_ j < n. 
xCAr'lP(k,a) 

In particular, the same  estimate holds for #~(A). 

Remark 3.9: With  L ~ denot ing the set of all first re turn  loops at  a the above 

es t imate  becomes Vn,L(S-JA) <<_ 7-1C4"Vk,L, (A) for all 0 < j < n. If  addi t ional ly 

L = L ' ,  then  one can obviously choose ~ -- 1. 

Proo~ In the case k = n the inequality is easy to check (or proceed as in the 

following proof  but  omi t  the z-coordinate) .  Thus  assume k < n. If  x E S-JA  
contr ibutes  to Vn(S-JA) then x E S-JA  A P(n,a ,L) .  Define a m a p  ~: S-JA  M 

P(n, a, L) --+ (AnP(k,  a ) ) x P ( n - k ,  a, L) by ~(x) = (y, z), where y E P(k, a) with 

y[0, k) = (Six)f0,  k) and z E P ( n - k ,  a, L) with z[0, n - k )  = (Six)[k, n). Then  for 

(y, z) = v~(x) we have tha t  S J x  = S~f(SJx) <_ Sk fy  + Dk + Sn_kfz  + Dn-k and 

thus exp( S,~f x) <_ C 2 • exp( Sk f  y)exp( Sn_kf  z). Since t~ is injective, s u m m a t i o n  

over all x E S-J A C~ P(n, a, L) yields 

Zn ,  L • ~n(S-JA) < C 2" ( ~ exp(Skfy) )  " Zn-k,L. 
yEAnP(k ,a)  

By L e m m a  3.7, Zn-k,n/Zn,n ~ C2/Zk,L and the result follows since Zk,n >_ ~/Zk 

by assumption.  I 

If  for each n a large enough set Ln has been chosen, and if f is Z- recurrent  a t  

a, then  the sequence of measures  ttn,Ln will have good properties.  

THEOREM 3.10: Suppose (X, S) is a mixing Markov shift given by a graph G = 

(V, E) where E = N or E = { 1 , . . . ,  NE} for some N E E  N. Let f: X --+ R be a 
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continuous function which is Z-recurrent at vertex a and satisfies Prop(f) < oe 

and SUPn Dn( f )  < ~ .  Let 7 > O. 

Assume that for each n with P ( n ,  a) ~ 0 a set  of first return loops L~ has been 

chosen such that 

Zm,L~ >_ T Zm for all l <_ m <_ n. 

Then p~ := P~,L~ (as defined above) yields a sequence (indexed by 

{niP(n,  a) ~ 0}) of invariant probability measures  such that 

(a) for every ~ > 0 there is some N such that #n(Xo > N)  < c for aH n, 

(b) the sequence ttn is tight, 

(c) for every ~ > 0 there is some N such that #n{Xli(x~) ~ a for 0 < s < N}  

< ¢ for all n. 

Proo~ Let C := exp(D)  where D = supn Dn (f ,  S). (a) Let e > 0. For N, l G N 

define BI(N)  = {xlx[0, l) is a first re turn  loop at  a and xi > N for some 0 _< i < l} 

and At (N)  = ~xeB~(N)nP(l,~)exp(Sifx).  Since ~ = 1  I. Z[ /ZI  < c~ there is some 

N such tha t  E l  IAz(N)/Zl  < 7" C-4 • ¢. We es t imate  #n(Xo > N).  For tha t  let 

0 _ < i < n .  Then  

Sil/n(XO > N) ~- 1]n(X i > N)  

i n-1 
= Z Z ~ ' n ( { x l x ~  > N,x[j ,k]  • Ln}) 

j = 0  k=i 
n 

_ < E l .  m a x  un({x lx i>  N , x [ j , j + l )  e n n } ) .  
i-t+l<_j<_i 

/=1 

If  there is no first re turn  loop of length l in the set Ln, then  

vn({xlx i > N , x [ j , j  + l) • Ln}) = O, 

and otherwise L e m m a  3.8 yields 

Pn({XlX i > N , x [ j , j  +l )  • Ln}) -< ~-Ic4AI~NJ.( ~ 
Zt 

This shows tha t  

n 
SiVn(3:o :> N)  < ' - f - I c 4 -  E l .  A d N )  

- Z l  
/=1 

and thus #n(Xo > N) < e. 

(b) We show tha t  the sequence #n is tight. Let  e > 0. Fix  a sequence ¢k > 0 

such tha t  2.~k>_o¢ k K ¢. For each k _> 0 choose Ark such tha t  #n(Xk > Nk) < ¢k 
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for all n. Let F :=  {x C Xlxk <_ NIH for all k C Z}. The set F is compact  and 

p~(F c) _< ~ k e z  Pn(xk > Nlkl) _< 2. ~k>0Ck < C. 
(c) Since ~n~=l n .  Z*/Zn < ¢c there is some N such tha t  ~n>N nZ*/Zn < 

7 " C  - 4 " x .  I f n  < N t h e n p ~ { x l i ( x s  ) ~ a for 0 < s < N}  = 0. Now suppose 

N < n and let 0 _< i < n - N.  By Lemma 3.8 we have tha t  Vn({Xlx[j, j + l) is a 

first re turn loop at a}) <_ 7 - 1 C  4. Z~/ZI for all l _< n. Thus 

Si~n{Xli(Xs) ~ a for 0 < s < N} = L,n{xli(xs ) ~ a for i < s < i + N}  

i--1 n--1 

= ~ E vn((xlx[j'k] is a first re turn loop at h i )  
j=0 k = i + N  

< ~ l. max0_<j<~ • .n({xlx[j, j  + l) is a first return loop at a)) 
/=N+2 

< " f - l c 4 .  ~ l Z~ < c 
- Zl 

/=N+2 

by the choice of N.  For n - N _< i < n we have 

Sipn{Xli(Xs) ~ a for 0 < s < N}  ---- 0. | 

Remark  3.11: Let Z0 :--- 1. Since the map 

n--1 

¢: ( U  P*(k,a) x P ( n - k , a ) ) U  P*(n,a)--+ P(n,a) 
k = l  

defined by ¢(x,  y) = z where z[0, k) = x[0, k) and z[k, n) = y[0, n) is bijective, 

Lemma 1.5 with n l  = k and n2 = n - k shows tha t  

c -~ • ~ z ; .  z~_~ <_ z~ <_ c ~. z ; .  z~_k. 
k=l k = l  

Thus the sequence Zn is not  necessarily a renewal sequence, but  not too far from 

being one. 

4.  E q u i l i b r i u m  s t a t e s  

In  the preceding section we constructed sequences of measures ]t n ---- Pn,L,~ asso- 

ciated to a Z-recurrent  function f and a sequence Ln of sets of first re turn loops. 

The sequence #n was shown to be tight whenever the sets Ln are large enough. 

This implies the existence of weak accumulat ion points [P, Thm.  6.7]. The main  
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result of this section states the following: if the measures pn are good for f ,  

then a weak accumulation point p of the sequence tt ,  is an equilibrium state if 

it satisfies the necessary condition f f - d #  < oo, i.e., if # is a good measure for 

f ,  too. 

We defined an invariant Borel probability measure # on (X, S) to be good if 

f f - d p  < c~. There is no loss of generality in considering only good measures # 

for which h , (S)  + f f d#  can be evaluated and agrees with Prop(f), just  because 

Prop(f) > -ec .  

Definition 4.1: An equilibrium state for f is a good measure # with h , (S )  + 

f f d#  = Ptop(f). 

For the function f = 0 we have that  Prop(f) equals the Gurevic entropy of S. 

It  is known that  equilibrium states exist if Prop(O) = oc, and for Prop(O) < oo 

an equilibrium state exists if and only if the Markov shift is positive recurrent, 

[G]. The existence of equilibrium states (in a slightly more general sense) was 

shown for H61der continuous positive recurrent functions for which the Ruelle- 

Perron-Frobenius operator maps the constant function 1 to a bounded function, 

[S1]. We shall prove the existence of equilibrium states in a more general setting. 

We only assume SUpn Dn(f )  < c~ instead of HSlder continuity and also cover 

cases where the Ruelle-Perron-Frobenius operator is of very limited use since it 

maps bounded flmctions to functions that  are not real-valued (see Section 6 for 

a discussion on the distortion property and H61der continuity.) 

The main result of this section is the following. 

THEOREM 4.2: Suppose (X ,S )  is a mixing Markov shift and f: X --+ N a 

continuous function which is Z-recurrent at vertex a, satisfies Prop(f) < oo, and 

suPn Dn(f )  < c~. Let "y > O. Assume that for each n with P(n ,a)  7 ~ @ a set of 
first return loops Ln has been chosen such that 

Zm,L, >_ "~ Z,~ f o r a l l l < _ m K _ n .  

Let 

1 1 n-1 
Pn : :  Zn L~--~ E exp(Snfx)"  ¢~x and  [,t n : :  - y ~  Sipn . 

' x6P(n,a,Ln) n i=0 

(a) The sequence of shift invariant probability measures #n is tight and has a 

non-empty set of weak accumulation points A = A( (pn)n6~,P(n,a)#O). 
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(b) Suppose that all #n are good for f (which, for example, is satisfied if all 
the Ln are finite). Then for every # E A we have 

is an equilibrimn state for f iff / f - d p  < P o o .  

(c) Suppose supn f f-dlzn < c~. Then every p E A is an equilibrium state. In 
particular, f has an equilibrium state. 

(d) Suppose infx~x f (x )  > - ~ .  Then any sequence Pn as defined above is a 
sequence of good measures for f .  111 particular, one might choose Ln to 
be the set of all first return loops for all n. Every # E A is an equilibrium 

state. In particular, f has an equilibrium state. 

Since (X, S) is mixing, P(n ,  a) ~ 0 for all n large enough, thus #n will be 

defined for any large enough n. Note that the conditions Zm,Ln >__ 7Zm for all 

1 _< m < n can be satisfied with finite sets Ln and then the associated measures 

#~ are all good for f .  If # Peru (S) < e~ for all n (for example, if X is locally 

compact), then using the whole set of first return loops at a for each Ln gives a 

good sequence of measures Pn. 
In Section 7 we shall use part (c) of the theorem to study the Gauss map. 

Proof of Theorem 4.2: (a) The sequence #~ is tight by Theorem 3.10, and the 

space is separable complete metric, thus the set of weak accumulation points is 

non-empty [P, Thin. 6.7]. 

Now suppose we have shown (b). Then 

(c) If suPn f f -dpn  < oc, then in particular all #~ are good for f .  By (a), 

A ~ 0. Let p E A. We show that p is a good measure for f and thus an 

equilibrium state by (b). For each N E N the function fN = ra in ( f - ,  N) is con- 

tinuous and bounded and thus f fNdp = l i m k - ~  f fgdpnk <_ supn f fNdp~ <_ 
SuPnf f -d#n .  By monotone convergence, f f - d p  = l imN-~  f fNdp <_ 

sup f f -dpn  < c~. 
(d) The condition implies supn f f - d p ,  < c~ for any sequence of probability 

measures, thus (c) applies, in particular for the sequence where all Ln are the set 

of all first return loops. 

(b) Let it E A. If tt is an equilibrium state then f f - d #  < ~ by definition. 

Now suppose f f - d p  < c~. Then h,(S) + f fd# < Prop(f) by the Variational 

Principle, Theorem 2.4. Thus to prove that # is an equilibrium state it remains 

to show that  h,(S) + f fd#  >_ Prop(f). 
Most of the rest of this section is devoted to the proof of this inequality. We 

will have to control certain conditional entropies. This is achieved in a preceding 
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series of l emmata .  Then,  in a final step, all these es t imates  are put  together  to 

show the above inequality. 

We s ta r t  wi th  the following useful fact; the special case d = 1 is the tr ivial  

pa r t  of [Wl,  L e m m a  9.9]. 

LEMMA 4.3: Let p be a discrete probability measure  on a countable (possibly 

finite) set Y with p(x) > 0 for all x E Y and g: Y --+ IR a p-integrable function 

with Z(9 ) := }-~-xeY eg(X) < oc. I f  d > 1 is a constant such that p(x) /p(y)  <_ 
d . eg(X) /e g(y) for all x, y E Y,  then 

Ig(p) - ( logZ(g)  - / g d p )  I < logd. 

Proof:  By  assumpt ion  p(x)e g(y) <_ deg(¢)p(y) for all x, y. S u m m a t i o n  over y 

yields p(x ) /d  < eg(~)/Z(g) for all x. S u m m a t i o n  over x yields d.p(y) 2 eg(v)/Z(g) 

for all y. Now 

f gdp - log ~ g(x)p(x) - ~(log z(9))p(x) Z(g) 
X 

= ~ p(x) log ~ z (g)  / 
X 

> ~ p ( x ) l o g  (p(x)~ 
- \ d ]  

X 

= - H ( p )  - logd. 

Similarly f g d p  - l ogZ(g )  < - H ( p )  + logd. | 

Let /3 be  the zero par t i t ion  of X ,  tha t  is the par t i t ion  elements are the sets 

[i]0 = (x  C Xlxo = i}. Let /3(n) = / ? V S - I ~ V S - ~ / ~ V . . . V S - ( ~ - ' ) / 3 b e  the 

par t i t ion  into cylinders of length n. 

Now let u~, #n be defined as in Theorem 4.2 (b). Since Pn is good, we have 

hun (S) + f fdt~n <_ Prop(f) < OC by the Variat ional  Principle,  Theo rem 2.4. This  

shows tha t  f has finite integral with respect  to pn. Since Siu~ < n. p~, f fdSiu~ 

is finite for all i. Thus  1In .  f S~fdun = f fd#~. 

LEMMA 4.4: ( l / n ) .  H,~(~(n))  + f fdpn = ( 1 / n ) . l o g Z ~ , L  . 

Proof: Let Y = supp(un) ,g  = Snf ,  d = 1 and p(x) = u,~(x). Then  H,n(/~(n)) = 

log Z,~,rn - f Snfdun by L e m m a  4.3. Now use 1/n .  f Snfdu,~ = f fd#,~. II 

Suppose tha t  # is a weak accumula t ion  point  of the #n. To es t imate  hp(S) 

from below it might  be impossible to use the zero-par t i t ion /3, since it might  



244 D. F IEBIG,  U.-R. F I E B I G  AND M. YURI  Isr. J. Math .  

have infinite entropy with respect to #. Instead we will use some suitable finite 

partitions. Whatever partitions we are going to use, the next lemma gives an 

estimate that  links to the quantity 1in. H,,, (~(n)) controlled above. 

LEMMA 4.5: Let a be some finite partition of X into closed-open sets. Let s > O. 
Suppose that p is a weak limit of a subsequence #n~. Then hu(S ) > h~(a; S) 

and hu(a; S) >_ (1/n)H~,, (/3(n)) - (1/n)H.,~ (/3(n)la(n)) - 2s .for all large enough 

Proof: 

h.(S) >_ h , ( a ;  S) since a is finite 

>_ l-H.(a(q)) - e for q large enough (supposed to be fixed from now on) 
q 

>_ l-H..(a(q)) - 2s by weak convergence for large enough n = ni >_ q 
q 
1 

>_ -H.~(a(n))  - 2s since n >_ q and by [Wl, Thm. 4.10] 
n 

n - 1  
1 

>- ~ E Hs~. . (a(n) ) -  2s by [Wl, the remark following Thm. 7.1]. 
i=0  

Since u.  is supported on points of period n one obtains Hsw,, (a(n)) = H.,, (a(n))  

for all i and H.~(/3(n) V a(n)) = H.~(/~(n)), thus the above equals 

1 
- H . .  - 
n 

= 1H~, ( a ( n ) ) + l H , , ( 3 ( n ) ) - l H , , ( / 3 ( n ) V a ( n ) ) - 2 s  
n 

- -  1H.  (9(n) ) -  . 
n n 

We have to find a finite partition ct that  gives us sufficient control over 

(1/n)H~.(/3(n)[a(n)). Again, the first idea might be to use some clustering of 

the zero-partition /3. But with such a choice we were not able to obtain the 

crucial entropy estimate in Lemma 4.8. However, it turns out that  a parti t ion 

Ctg defined by a suitable finite set of return loops L works fine. 

For that ,  suppose L is a finite set of first return loops at vertex a (not to be 

confused with the sequence L,~ already chosen in Theorem 4.2). Let a = aL 
be the parti t ion of X into the sets R(w,i) := {x ~ X [ x [ - i , - i  + [w[) = w}, 
w ~ L, 0 _< i < Iwl and the "bad" set B = X - UweL U0<~<lwl R(w, i). 

For n E N let a(n)  = a V S - t a V S - 2 a V  . . . vS - (~ - t )a .  For an a tom P E a(n) 
let m ( P )  denote the number of times a point x E P visits the set B; thus 
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re(P) = S,AB(x) for all x E P.  Finally, note tha t  the function fB :=  f .  1B is 

continuous since B is closed open. 

Let D :=  sup,~ Dn(f) and C :=  exp(D).  Fix some constant  M with C < M < 

oc and (1/n) logZn <_ M for all n. Such M exists since (1/n) logZ,~ converges 

to Prop(f) < ~ and Zn < ~ for all n. 

LEMMA 4.6: For every P E a(n) with vn(P) > 0 we have 

z 
xEPnP(n,a,L~) 

Proof: The s ta tement  holds trivially if m(P) = O. Now assume re(P) > 0. Let 

x E P M P(n, a, L~). If  I is a maximal  subinterval of [0, n - 1] such tha t  Skx E B 
for a l l k  E I ,  then xIi is a l o o p  at vertex a. I f [0 ,  n -  1] has k such maximal  

subintervals, say I 1 , . . - ,  Ik, then the sum of their lengths is m(P). Thus there is 

Yx E P(m(P),a) withyx[0 ,  m ( P ) - l ]  = x i h . . . x l i  k. Thus for each 1 < I < k 

v~b(l) SJyxl < D where a(1) = 0 if 1 = 1 and else we have I~-~jc~ Six - ~--~j=a(l) 
a(l) = ]I1] + " "  + ]I~-1I and b(1) = II1] + . - .  + I I~ l -  1. Therefore 

re(p)-1 

I E S i x -  E SJYx t<-k 'D<-m(P) 'D"  
j Eul ll j=0  

Thus we obtain IS,~fBx - S~(p)fYxl <_ re(P). D and 

E exp(S~fBx) <- E exp(Sm(p)fyx + re(P). D) 
xE PnP( n,a,L~ ) xE PMP( n,a,L~ ) 

_< e x p ( m ( P ) .  D)Zm(p). 

Since log Zm(p)  ~ M .  re(P) the result follows. I 

LEMMA 4.7: For every P E a(n) with vn(P) > 0 we have 

H'~('lP)(/~(n)) <- l°g ( xEPo P~(n,a,L~) exp(SJU x ) ) -  f SnfBdu~('iP)+2m(P)'D" 

Proof: The s ta tement  is t rue if m(P) = 0. Now assume tha t  re(P) > 0. Let 

Y = supp(un(.IP)),p(x) = ,~ (x i P )  and g(x) = SnfBx. Then g is p-integrable, 
n - 1  

since ]SnfBI ~_ ~-~i=o If o S i] and each If o S i l i s  integrable with respect to/'In aS 

already observed above. Moreover, Z(g) < ~ by Lemma 4.6. Now 

p ( x )  _ _ e×p(SJ ) 

p(y) l/n(y) exp(Snfy) - exp(Snfx - Snfy) 

< exp(SnfBx - sn fBy + 2re(P)  • D) - - - -  e 2m(p)Deg(x) 
-- eg(Y) 
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where the inequality holds, since Six ¢ B iff Siy ¢ B and for every maximal 

subinterval [i,j] of [0, n - 1] with Skx ~ B for all i _< k < j ,  x E P we have 
J I~k=if(Skx) -- f(Sky)l < Dj-i+l(f) <_ D and there are at most m(P) + 1 < 

2m(P)  such intervals. Thus Lemma 4.3 applies and the result follows. | 

Combining the last two results gives the crucial estimate. 

LEMMA 4.8: For each n we have 

Proof: 
have 

1.n H'~(/3(n)la(n)) <- (3D + M). tin(B) - / f S d t * n .  

By Lemma 4.6 and Lemma 4.7 for every P E c~(n) with u,~(P) > 0 we 

H~(.Fp)(/3(n)) < re(P)-(3D + M) - f 
Thus 

1 H,~(/3(n)la(n) ) 1.Eun(P).H,n(.ip)(/3(n) ) 
n u 

P 

1 f < - "  E u~(P) .  Ira(P) • (3D + M) - S~fBdun(.IP)] 
n 

P 

/ 1  snfBdun + (3D + M) f l . S n l B d V n  
n n 

= - + ( 3 D  + M ) p . ( B ) .  

This proves the lemma. II 

Proof of Theorem 4.2(b) (continued): Recall that  p E A is the weak limit of 

the subsequence # ~  and f f -d#  < ~ .  First note that  f has finite/t-integral 

since the assumption Prop(f) < ~ and the Variational Principle imply f f+d# < 
P~op(f) + f f - d ,  < ~ .  

Now let ~ > 0. For all n large enough we have -1 /n .  log 7 < ~/2 and, by 

Theorem 1.9, 1/n. logZn _> Prop(f) - ~/2. Thus Lemma 4.4 and the condition 

Zn,L,~ >_ "~Zn imply 

1H~(/3(n)) + f fdpn >_ Prop(f)-e. 

Using Lemma 4.5 and the last inequality shows for all n = ni large enough that  

h,(S) + f fdpn + 1 .  H,.(Z(n)lc4n)) >_ Prop(f) - 3e. 
a n 



Vol. 131, 2002 PRESSURE AND EQUILIBRIUM STATES FOR MARKOV SHIFTS 247 

By Lemma 4.8, with fa  = f _ fB, we obtain 

/° h•(S)+ f d#n~ >_Ptop(f)-3¢-(3D+M)'pn~(B) 

for all ni large enough. 

According to Theorem 3.10 there is an N with pn{Xli(xs ) ~ a for 0 < s < 

N}  < ¢2/4 for all n. This implies p~({x[j,k] is a first re turn loop for some 

- N  < j _< 0 _< k _< N})  >_ #n({xli(xj) = i(xk) = a for some - N  _< j _< 0 

and 1 _< k <_ N + I } )  > 1 - ~ / 2  for a l l n .  So there is a finite set L of first 

return loops at a such tha t  #n(B) <_ ~ for all n, where B denotes the bad set of 

the par t i t ion a = aL as defined above. Since B is closed open and # is a weak 

accumulat ion point of the #n, also p (B)  < ¢. Enlarging the set L if necessary 

we may  assume tha t  f lBI f ldp < c, since f l f ld# < ~ .  Since L is a finite set, 

B e is a finite union of cylinder sets, thus the function fa  = f _ f s  is continuous 

and fa(x) = 0 if x E B. Moreover, since D l ( f )  < ~ ,  fG is a bounded function. 

Thus f fad#n~ -+ f fad#. This convergence and #n(B) < ¢ implies 

h,(S) + f fad# >_ Prop(f) - 3~ - ( 3 0  + M ) .  ~. 

Final]y, [ f fBd#l < ¢ shows tha t  

+ f fdp >_ Prop(f) - 4¢ - (3D + M ) -  h~(S) 

With  ¢ -+ 0 this shows tha t  hu(S) + f fdp > Prop(f). | 

The following is an example of  a function f which satisfies all conditions of 

Theorem 4.2, but  has no equilibrium state. Thus it can actual ly happen tha t  for 

every tight sequence of good measures as in Theorem 4.2 the set of accumulat ion 

points of the p ,  is disjoint from the set of good measures of f .  For a positive 

result see Section 7, where we apply Theorem 4.2(c) to the Gauss map.  

Example 4.9 (inspired by [GS]): Let (X, S) be the Bernoulli shift in graph pre- 

sentation with a unique vertex. Let (ai)icI~ be a sequence with a i > 0 for all 

i , ~ a i  = 1 and - ~ i a i -  loga~ = ec. Define f :  X --+ R by f x  = logai  if x0 = i. 

Then 

n--1  

Zn = Z exp(l°gaio + "'" + l ° g a i ~ - l ) =  Z r I  aik = 1. 
i o , . . . , i n - l G N  io ..... i~ -1  k=O 

Thus Ptop(f) = 0 and Z* = 0 for all n > 1 implies tha t  f is Z-recurrent.  

We show now that  f has no equilibrium state. Consider a good measure # 
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for f .  Let pi :-- P([i]o) and let m denote the Bernoulli  measure  on X with 

m([i]0) = Pi for each i. Since # is good and f is constant  on each set [i]0 we 

obta in  -~-~-iP~" logai  = f f - d m  = f f -d#  < oo. Thus m is good for f ,  too. 

For N E N consider the par t i t ion  Oz N consisting of the sets [i]0, i _< N and the 

set [.Ji>N[i]0. Then  H~(aN(n)) < n .  H,(ag) = n .  Hm(aN) = Hm(aN(n)) 
and thus h,(C~N; S) < bin(aN; S) for all N.  Therefore h~(S) <_" hm(S). Since 

f f -din = f f -d#,  and since m is good for f ,  we obta in  from the Variat ional  

Principle,  Theorem 2.4 tha t  

+ / sd. _< hm(s) + / < -- 0 h,(S) 

Thus  hm(S) = - ~~iPi logpi  < ~ and - ~-~i Pi logpi + ~iPi" logai  = hm(S) + 
f fdm < 0 = log(~', i hi). Since by assumpt ion  - ~ i  h i .  logai  = oc, this implies 

Pi # ai for some i and hm(S)+f  fdm < 0 ([W1, L e m m a  9.9, with a i replaced by 

log ai], which holds for countable probabi l i ty  vectors with - ~--~-i Pi log pi < c~ and 

-~ i  Pi" log ai < oc). Thus h, (S)+ f fd# < Ptop(f) and # is not an equil ibrium 

s ta te  for f .  | 

R e m a r k  4.10: In certain special cases (including the Bernoulli shift) more  ele- 

men ta ry  construct ions of equil ibrium states  are possible. We would like to sketch 

a result, but  we will not go into details, since the proofs, a l though more elemen- 

tary,  are certainly less elegant than  the one given above (and we even need 

s t ronger  conditions than  in Theorem 4.2). The  main  idea is to consider, for 

a fixed ver tex a, the following collection of subsets of X (by Theorem 3.10 it 

will be an a lmost  sure par t i t ion  with respect  to all measures  under  consider- 

ation).  For every first re turn  loop w at  ver tex a and every 0 < i < Jw I let 

R(w,i) :-- {x C XIx[ - i , - i  + [wJ) = w}. Let a denote  the collection of all these 

disjoint sets R(w, i). Let w ~ denote the point  x C Perlwl(S) with x[O, ]wJ) = w. 

Define a vector  p = (PR)Re~ by 

exp(Skfw~) for R = R(w,i) E c~ with k = Iw[. 
PR . -  Zk 

One interesting feature is tha t  f is Z-recurrent  at  ver tex a iff ~ R c ~ P R  < (x). 
This is a simple calculation: 

REa k = t  w,JwJ=k O<_i<k k = l  

Z~ 

k = l  

exp(Skfw ~) 
}2 

w,lwl=k 
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If f satisfies the conditions of Theorem 4.2 and if additionally 

s u p f  < oc, s u p f f - d # n  < c~ and H(p) := - ~ p R l o g p R  < oc, 
J REc~ 

where the #n are defined with L~ equal to the set of all loops (for all n), then 

one can show that  H~(a) < c~, thus hu(S) >_ ht,(a; S). This can be used to show 

that  any weak accumulation point of the ttn is an equilibrium state for f .  It  can 

be shown that  the above conditions are satisfied for any continuous function f 

with SUPn D n ( f  ) < ~,Ptop( f )  < ~ , s u p f  < c ~ , s u p f f - d p n  < cc defined on a 

mixing Markov shift (X, S) given by a graph presentation such that  there is a 

vertex a and a nmnber K • N such that  ]w I <_ K for all first return loops w at a. 

5. O n e - s i d e d  M a r k o v  sh i f t s  

Let G = (V, E) be a countable strongly connected directed graph. Let (X' ,  S ')  

be the transitive one-sided Markov shift defined by G, i.e., 

X'  := {x' = (X~n) • E ~u{°} It(xn) = i(Xn+l) for all n > 0}, 

where t and i denote the terminal and initial vertex maps. Let f ' :  X '  --+ • be 

a continuous function. Let the topological pressure of f '  be defined by the same 

formula as in the two-sided case, see Definition 1.2. Theorem 1.9 holds in the 

one-sided case, too. The definition of the distortion (Definition 1.3) as well as 

the definition of good measures (Definition 2.1) carry over. 

Let (X, S) be the transitive two-sided Markov shift given by G. Let 7r: X --+ X I 

be defined by 7~(x) = (Xn)n)_o , where x = (Xn)neZ. Then 7r is continuous, onto, 

and rrS = S~Tr. Let f :  X --> St be defined by f = f'Tr. We call (X, S) and f the 

two-sided version of (X' ,  S') and fl.  Note that  Dn(f )  = D n ( f  1) for all n. 

THEOREM 5.1 (Variational Principle for one-sided Markov shifts): Let (X',  S') 
be a one-sided transitive Markov shift and let fl: X t ~ • be a function with 

Dn( f ' ) / n  -+ O. Then 

Ptop( f ' ,  S') = Pmeasure(f , $1) • 

Proof: Let (X, S) and f be the two-sided version of (X',  S') and f ' .  For any 

vertex a the map 7r induces a bijection between Pets (n ,  a) and Pers , (n,  a), thus 

Ptop(f' ,S') = Ptop(f,S). Since D,~(f) = Dn(f ' )  for all n, by Theorem 2.4 it 

remains to show that  Pmeasure(f t, S I) ~- Pmeasure(f, S). Given a good measure 

p for f on let #1 = 7rp denote its image under 7r. Then S~p ~ = #~ and obviously 
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h~(S) = h~,(S'). Now f -  = ( f ' ) -  o 7r implies that  it' is a good measure for f '  

and that  f f d#  = f f 'd#'.  Thus h, (S)  + f fd#  = h•,(S') + f f 'd#'.  On the 

other hand, the Kolmogoroff consistency theorem shows that  for any measure # '  

on X '  which is good for f '  there is a unique S-invariant measure it on X with 

it({x E Xlxn = ao . . . .  , Xn+rn -= am} : :  itt({X' • X'lXto -~ a 0 , . . . ,  X~m = am} for 

every a 0 , . . . , a m  • E , m  > 0, n • Z. Again f -  = ( f ' ) -  o 7r implies that  it is a 

good measure for f .  Since it' = 7r# the above reasoning shows hg(S) + f f d#  = 
h#, (S') + f f 'd#'.  Taking the suprema over all good measures on both sides gives 

Pmeasure(f', S') ~- Pmeasure(f, S). I 

COROLLARY 5.2: Let (X' ,  S ')  be a one-sided transitive Markov shift and let 
f ':  X I -+ R be a continuous function. Let (X, S) and f be the two-sided version 
of (X',  S') and f~. Then f has an equilibrium state iff f '  has an equilibrium 

state. 

Proof: This follows from the proof of Theorem 5.1. I 

Thus, with the obvious notion of Z-recurrence Theorems 4.2 applies in the 

one-sided setting, too. 

6. The distortion properties 

This section provides estimates for the distortions Dn(f )  via the so-called varia- 

tions Vn(f) of f .  In particular, the commonly used condition of Hhlder continuity 

implies supn Dn(f)  < co. However, we give an example where our theorems ap- 

ply but  f is not Hhlder continuous and not even uniformly continuous, that  is 

V,~(f) does not converge to 0. This is meant to illustrate the fact that  our results 

apply to a wider class of functions. 

Definition 6.1: The n th  variation of f is 

Vn(f) := s u p { f i x -  fYi ix[-n,n]  = y[-n,n]}.  

Note that  Vn+l(f) <_ V,~(f) and Vo(f) : Dl ( f ) .  Clearly V,~(f) -~ 0 iff f is 

uniformly continuous with respect to the standard metric 

d(x, y) = 2- min{In]ixn¢yn'nEZ } 

whenever x, y E X, x ~ y. 
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PROPOSITION 6.2: Let (X, S) be a transitive Markov shift and let f: X --+ R be 
a continuous function. Then 

n - - 1  

(a) Dn(f) <_ 2. ~ Vi(f), 
/=0  

(b) Vo(f) < ~ ,  V~(f) --+ 0 :=> D~(f) < oc for all n and D . ( f ) / n  --+ O, 
O<3 

(e) S V . / ( f )  < ec ~ supDn(f) < oc. 
i=0  n 

Proof: (a) Consider x, y C X with x[0, n) = y[0, n). For 0 < i < n let k = k(i) = 
min(i, (n - 1) - i); then Six[-k,  k] = S iy[-k, k] and thus IfSix - fSiyl  <_ Vk(f). 
Thus we have 

n--1 n--1 n--1 

I S n f X -  SnfYl <_ ~ I f S~x -  fSiy[ <_ ~ Vk(i)(f) <_ 2 ~-'~ V~(f). 
i=0  i=0  i=0  

Given (a) the remaining results are straightforward. | 

A function f is Hhlder continuous iff there are M > 0 and A < 1 such tha t  

Vn(f) < MA n for all n > 0. 

Observation 6.3: The above proposit ion shows tha t  Hhlder continuous functions 

satisfy SUPn Dn(f) < co. 

We give an example where our theorems apply - -  the function f has an equi- 

l ibrium state by Theorem 4.2(d), since it is Z-recurrent  and bounded from below 

- -  but  f is not  Hhlder continuous and not even uniformly continuous, since 

Vn(f) = 2 for all n. 

Example 6.4: A mixing locally compact  Markov shift (X, S) and a continuous Z- 

recurrent function f :  X -+ { - 1 ,  0, 1} with Prop(I) < oo and V n - t ( f )  = Dn(f) = 
2 for all n > 1. Let G be the graph with vertex set V = Z and edges as follows: 

• there are two edges, say c and d, from vertex 0 to vertex 1, 

• there is an edge en from vertex n to vertex n + 1, n _> 1, 

• there is an edge bn from vertex n to vertex n + 1, n _< - 1 ,  

• there is an edge an from vertex (2n + 1) to vertex - ( 2 n  + 1), n _> 1. 

Let (X, S) be the Markov shift defined by G. Then  X is locally compact  and S 

is mixing. Define f :  X --+ { - 1 ,  0, 1} as follows. Let x E X.  

• If  Xo ~ {enln > 1}, then let f (x)  = O. 
• If  xo = en, then let f (x)  = ( - 1 )  n if x - n  = c and let f (x)  = ( - 1 )  n+l if 

X - n = d .  
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The map  is continuous, since f ( x )  depends only on x [ - n ,  0] for some n = n(x) >_ 

0. Since f has values in { - 1 ,  0, 1}, V,~(f) < 2 for all n. Now let n _> 0. Then  

consider x , y  C X with xk = en+l+k = Yk for 0 < k < n , X - n - 1  = c and 

Y-n-1  = d. Then x [ -n ,n ]  = y [ -n ,n ]  and I f x  - fYi = 2. Thus  Vn(f)  = 2 

for all n > 0. Now we determine Dn( f ) .  Consider x E X such tha t  x[0, k] is 

a first re turn  loop at vertex 0. Then  x[1, k] = e l""e2nanb-(2n+l) ' "  "b-1 for 

some n _> 1. Thus S k f ( x )  = ~-~0<i<k f ( S i x )  = O. Now consider x , y  C X with 

x[0, n) = y[0, n) and a unique 0 < k < n with xk E {c, d}. Then  ISkfxl ,  ISkfyl  <_ 

1 and f S i x =  S i f y, k < i < n, thus ]SnfX -- Sn f y ]  _~ 2. Combining these two 

cases shows D n ( f )  < 2 for all n. Let x , y  with x[0, n) = y[0, n) and xo = Yo = 

e2n,Xl = Yl = an and X-2n = c,y--2n = dl then ISn fx  - Snfy]  = 2 and thus 

O n ( f )  = 2. 

Let a denote the vertex 0. Since for x E Per(n,  a) we have S n f x  = O, then 

we get Zn( f , a )  = # P ( n , a )  < co for all n and Prop(f) = ha(S)  <_ log2 < oc. 

Furthermore,  Z*( f ,  a) = 2 if n = 4 k + 3 ,  k _> 1, and Z*( f ,  a) = 0 otherwise. Since 

# P ( n , a )  grows exponentially in n,  we get tha t  ~ n Z ~ ( f , a ) / Z ~ ( f , a )  < oc. 

Thus f is Z-recurrent  at a. 

7. A n  a p p l i c a t i o n :  t h e  G a u s s  m a p  

Although the results we present here are mainly well known, we have chosen 

this example to illustrate how easily our theorems apply. Wi th  Y :=  (0, 1) - Q 

let T: Y -+ Y be the Gauss map T x  :-- 1 / x -  [ l /x] ,  where [y] :=  max{n  E 

Zin < y}. Then T is a countable-to-1 surjective map.  For every x E Y there is 

a unique k _> 1 such tha t  x C (1/(k  + 1), l / k ) ,  so the map T is differentiable. 

We will compute  the topological pressure of the potential  ¢: Y -+ 1~ defined 

by ¢(x) = - l og iT ' ( x ) ]  and we show tha t  there is an equilibrium state p of 

¢. We should mention P. Walters '  work [W2] where the Gauss measure was 

characterized as the unique equilibrium state for - l o g  IT~I in his sense and his 

me thod  used the Ruel le-Perron Frobenius operator.  The new feature is tha t  we 

characterize the Gauss measure as a limiting measure obtained from measures 

supported on periodic points. 

The next proposit ion is well known, and we omit the proof. 

PROPOSITION 7.1: There is a topological conjugacy T: N Nu{°} -+ Y from the 

one-sided Bernoulli shift (N •u{°} , S ~) to the dynamical system (Y, T) defined by 

the Gauss map. The map "r is uniformly continuous w.r.t, the standard metric 

on N r~U{°} and the Euclidian metric on Y.  

Now let S denote the two-sided full Bernoulli shift, which means S is the left 
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shift m a p  on N z and we consider this shift as given in graph presenta t ion with 

a single vertex.  A factor  m a p  ~r from S onto the one-sided shift S ~ is given by 

7rx = (x0, X l , . . . ) .  Now consider the function 

f :  N z --+ ]R given by f = ¢~-~r where ¢(y) = - log ]T'(y)l ,  y E Y. 

On a par t i t ion  set Qk = Y V ) ( 1 / ( k +  1 ) , l / k )  we have T y  = 1 / y -  k, thus 

T~y = - 1 / y  2 and Cy = 21ogy on Qk. Thus  in par t icular  f < 0. E lemen ta ry  

calculat ions show 

CLAIM:  For each rt k 0 we have  V n ( f )  < 8" 2 - n .  Thus  f is Hblder  con t inuous  

(see Section 7 for detTnitions), in particular SUpn D n ( f )  < oo. 

We check tha t  Prop(f) = O. By the above we have C := exp(suPn D n ( f ) )  < exp. 

Let a be  the unique ver tex in the graph  presenta t ion of N z.  

For al . . . . .  an C N let [ a , , . . . , a n ]  := 1/ (a l  + 1/(a2 + . . .  + 1 / a n ) ) . - . ) .  Then  

[ a l , . . . ,  a n - l ,  an] and [al . . . .  , a n - l ,  an + 1] are the two endpoints  of the interval 

A ( a l  . . . .  ,an)  which is the closure of {y E Y l a ( T i y )  = hi, 1 < i < n} in [0, 1]. 

Let rn (al  . . . . .  an) := 1-Lnl [hi, h i + l , . . . ,  a , ] .  A simple calculation shows 

IA(al  . . . .  ,a=)l  = l i a r , . . . , a n - l , a ~ ] -  [al, . . . , a n - l , a n  + 111 

=l[a2 . . . . .  a n - b a n ]  - [a2 . . . .  , a n - l , a n  + 111 

• [ a l , . . . , a n - l , a n ] "  [ a l , .  • . , a n - l , a n  + 1]. 

By induction one obtains  

I A ( a l , . . .  ,an)  I ----rn(a 1 . . . . .  a n _ l , a  n + 1 ) .  r n ( a l , . . .  , a n - l , a n ) .  

Note tha t  by definition e x p ( S n f z )  = FI~-l(Ti(wTrz))  2 for all z E 1~.  

Consider z = (zi)  E P ( n , a ) ;  then TzCZ E A ( z 1 , . . .  ,Zn). Choose a sequence of 

points  z k E i ~  such tha t  Tr~z k E A(z l  . . . .  , zn) and 77cz k converges to [ z l , . . . ,  Zn]. 

Then  

_ l o g C < _ S n f z _ S n f z k < _ l o g C = ~ C _ l <  e x p ( S n f z )  < C  for all k. 
- 1-In--~(T~(TTrZk))2 - 

n-1  i k Since l-L=0 (T ( r T r z )  converges t o  rn(Z 1 . . . .  , Zn) we obta in  

C _  1 < e x p ( S n f z )  < C. 
- - -  

Now let the z k converge to [ z b . . . ,  zn-1,  Zn + 1]; this gives 

C _  1 < e x p ( S n f z )  < C. 
-- rn(Zl  . . . .  , Zn-1,  Zn -~- 1) 2 - 
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The root of the product of these two estimates becomes 

C -1"  IA(Zl . . . . .  zn)l ~ exp(SnfZ) ~ C.  IA(Zl , . . . , zn) l .  

Since Zn(f, a) = EzeP(n,a)exp(Snfz) and since the [A(z l , . . . ,  zn)l add up to 1, 

we obtain C -1 < Z,( f ,a)  <_ C. This implies Ptop(f,a) = O. 
Since Z~(f,a) = Zl(f ,a)  and Z~(f,a) = 0 for n > 1, we get that  f is Z- 

Ei=o S~'n, recurrent. Since u~ :--- 1/Zn'~zep(n,a) exp(SnfZ)'hz and #~ := 1/n n-1 
we have p~ ---- un in the present case and 

M C 4 
~n({Z C -~[Zo = N}) ~ C 4 - e x p ( f ( N ~ ) )  _< ~-~ with M := ~-1" 

By Lemma 3.8, we obtain 

f f - d l a n  ~_.sup{f-(z)l:o -- N}"  p~({z ~ NUlz0 -- N}) < 

N 

< ~ M - 2 1 o g ( N +  1) 
- -  N 2 

N 

Thus sup f f -dpn  < c~ and, by Theorem 4.2(c), any weak accumulation point 

of the tight sequence #n is an equilibrium state for f .  Now let Pn = 7"TZPn. We 

claim that  Pn converges weakly to the Gauss measure m. By Theorem 4.2(c) the 

sequence ~t n contains a subsequence #~k that  converges weakly to a probability 

measure # and # is an equilibrium state for f .  Thus, since % 7r are continuous, 

Pnk ~ 7"lrp weakly. The proof of Theorem 5.1 shows that  7r# is an equilibrium 

state for fJ = CT. Since T is a conjugacy, ~-:rtt is an equilibrium state for ¢. I t  

is well known that  the Gauss measure m is the unique equilibrium state for ¢, 

thus P~k --+ m weakly. The above argument applied to a subsequence Pkl of the 

ttn shows that  Pk~ contains a subsequence pk~¢~ that  converges weakly to m, thus 

the whole sequence Pn converges weakly to m. Hence the Gauss measure has 

been obtained as a weak limit of a sequence of measures which are supported on 

periodic points. 1 

8. Defining pressure v ia  all periodic points 

In Definition 1.2 of topological pressure only periodic points that  visit a fixed 

vertex a are used. Are there classes of Markov shifts where one can use all periodic 

points when defining pressure? This is certainly not true in general; there are 

simple examples of Markov shifts with finite entropy and an infinite number of 
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fixed points, thus one cannot use all periodic points to compute Prop(O). But 

the answer is positive for so-called finite-range systems; see Proposition 8.1. A 

natural weaker condition is the specification property, i.e., when there is some N 

such that  for every pair of vertices a and b there is a path  of length N from a to 

b. However, if the graph has specification and even if the function depends only 

on the zero-coordinate, using all periodic points might not give the topological 

pressure (Example 8.2). 

PROPOSITION 8.1: Suppose (X, S) is a mixing Markov shift given by a graph G 
with vertex set V and f: X -+ ]R is a continuous function with Prop(f) < oo and 
Dn(Y)/n -~ 0. Let Z(n)  = Z ( ~ , / )  = E~eP~ro¢sl e×p(Snyx). S~ppo~e that V i~ 

finite. Then Prop(f) = lim(1/n) log Z(n).  

Proof: Note that  Z(n) = ~a~V Zn(f,  a) since Pern(S) = Ua~V P(n, a) by defi- 

nition. We know that  Prop(f) = l im(1 /n ) logZn( f ,  a) for all a E V by Theorem 

1.9. Let k be the cardinality of V. For each n there is an a E V such that  

Z(n) <_ kZn(f ,a).  Let a0 be some fixed vertex. Then (1/n)logZn(f ,  ao) <_ 
( l / n )  logZ(n)  _< maxacv(1/n)logkZ,~(f,a) for all n, and the bounds converge 

to P~op(Y). m 

Example 8.2: A mixing Markov shift (X, S) such that  between any pair of 

vertices there is a path  of length 2, a continuous function f :  X -+ R such that  

Vn(f) = 0 for all n >_ O, Prop(f) < oc, f is Z-recurrent but ~-~xeeer,(S) exp(S,ffx) 
= oc for all n. Thus the pressure cannot be calculated by considering all periodic 

points. 

Let the Markov shift be given by the graph G with vertex set V = NU {0} and 

for each k > 1 there is 

• all edge ak from vertex 0 to vertex k, 

• an edge b k from vertex k to vertex k, 

• an edge ck from vertex k to vertex 0. 

Let x C X and k > 1 such that  xo E {ak, bk, ck}. 

• If x0 = ak then let f (x)  = 2 log ~. 
• I f x 0 = b k o r x 0 = c k  then let f ( x ) =  ¼.1og{.  

This defines a continuous function f :  X -+ R with Vn(f) = 0 for all n _> 0. Thus, 

by Proposition 6.2 and Theorem 1.9, we have that  

Prop(f) : 7)hl~(l /n)" log Zn( f  , 0). 
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Let i(e) denote the initial vertex of an edge e. First note that if x E P*(n, O) = 
{x E Pern(S)li(xo ) = 0, i(xk) # 0 for 1 < k < n} and Xo = ak, then Sn fx  = 
2 log(l /k)  + (n - 1). ( l /k )  - log(l /k)  < 2 log(l /k).  Thus if x • P(n, O) = {x • 
Per~(S)ii(xo ) = 0}, then x[0, n) can be decomposed into the first return loops 

at vertex 0, say x[0, n) = x[0, il)x[il, i2) '" .x[is-1, is) with io = 0, is = n and 

1 < s < n, and if x0 = akl, • • . ,  X i s _  x = aks then 

exp(Snfx) < exp 2log 

Thus 

8 1 

z.(s,o) <_ Z Z I I  ,-z 
s----1 0 : i 0 < i l  < . . . < i s = n  (kl ,...,ks) j = l  kj 

s °0 1 

= Z IIE  
s=l  O=io<il < . . .<i ,=n  j = l  k=l  

-< E M n where M : =  E k-2 
s = l  0 = i o < i l  < . . . < i s  = n  k = l  

_< M n . 2 n. 

Thus we get Prop(f) <_ log(2M) < oo. 

To see that f is Z-recurrent first note that,  for all n _> 2, 

( 1 1 1)  °° 1 
Zn(f,O )=  E e x p  2 1 o g ~ + ( n - 1 ) . ~ - l o g ~  _<Ek--2.  

k = l  k = l  

Thus it suffices to show that Zn(f,  0) grows exponentially. By Proposition 1.8 

we have Prop(f) > Pin(f) > P(/IY) where Y is the SFT defined by the finite 

graph with the edges al,bl,Cl. Note that fb"  = 0. Thus P(fJv) equals the 

topological entropy of Y. Since Y is mixing and non-trivial, clearly P( f l r )  > 0 
and Zn(f,O) > z=(llv,0) grows exponentially. Thus ~ n n .  Z~/Z~ < oo and f 

is Z-recurrent at vertex 0. 

Finally, we show that ~ ' ~ x E P e r , ~ ( s ) e x p ( S ~ f x )  = co. Since Per . (S)  contains the 

fixed points x k defined by (xk)i = bk for all i C Z, one calculates 

exp (nk. kl) Z exp(SJ ) > Z log = 

xEPern(S) k = l  

There is no such example with # V  = oo and f bounded from below, since in 
this case #P(2N,  a) = c¢ and this trivially implies Prop(f) = l iml /n logZ(n)  



Vol. 131, 2002 PRESSURE AND EQUILIBRIUM STATES FOR MARKOV SHIFTS 257 

R e f e r e n c e s  

[B] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, 

Lecture Notes in Mathematics 470, Springer-Verlag, Berlin, 1975. 

[G] B . M .  Gurevic, Topological entropy of enumerable Markov chains, Doklady 
Akademii Nauk SSSR 187 (1969); English transl.: Soviet Mathematics 
Doklady 10 (1969), 911-915. 

[GS] B. M. Gurevic and S. V. Savchenko, Thermodynamic formalism for countable 

symbolic Markov chains, Russian Mathematical Survey 53 (1998), 245-344. 

[K] B. Kitchens, Symbolic Dynamics, Springer, Berlin, 1998. 

[P] K . R .  Parthasaraty, Probability Measures on Metric Spaces, Academic Press, 
New York, 1967. 

[PP] Ya. Pesin and B. Pitskel, Topological pressure and the variational principle for 
non-compact sets, Fhnctional Analysis and its Applications 18 (1984), 307-318. 

[$1] O. Sarig, Thermodynamic formalism for countable state Markov shifts, Ergodic 
Theory and Dynamical Systems 19 (1999), 1565-1593. 

[$2] O. Sarig, Thermodynamic formalism for null recurrent potentials, Israel Journal 
of Mathematics 121 (2001), 285-312. 

[$3] O. Sarig, Thermodynamic formalism for countable Markov shifts, Thesis, Tel 
Aviv University, April 2000. 

[R] D. Ruelle, Thermodynamic formalism, in Encyclopedia of Mathematics and its 

Applications, Vol. 5, Addison-Wesley, Reading, MA, 1978. 

[W1] P. Waiters, An Introduction to Ergodic Theory, GTM, Springer-Verlag, Berlin, 
1981. 

[W2] P. Waiters, Invariant measures and equilibrium states for some mappings which 
expand distances, Transactions of the American Mathematical Society 236 
(1978), 121 153. 


