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ABSTRACT

We give a general definition of the topological pressure Ptop(f, S ) for
continuous real valued functions f: X — R on transitive countable state
Markov shifts (X S ) A variational principle holds for functions satisfy-
ing a mild distortion property. We introduce a new notion of Z-recurrent
functions. Given any such function f, we show a general method how
to obtain tight sequences of invariant probability measures supported on
periodic points such that a weak accumulation point f¢ is an equilibrium
state for f if and only if f fdp < 00. We discuss some conditions that
ensure this integrability. As an application we obtain the Gauss measure
as a weak limit of measures supported on periodic points.
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0. Introduction

Topological pressure, the variational principle and the existence of equilibrium
states for continuous functions on shifts of finite type have been studied by Bowen
[B] and Ruelle [R]. This work has been extended to countable state Markov shifts
by Walters, Gurevic and Savchenko, and Sarig, [W2], [GS], [S1, S2]. Our work
continues and also complements this study. We neither use the Ruelle-Perron—
Frobenius operator, nor do we assume Holder continuity. This allows us to obtain
a variational principle and a theory of equilibrium states for a wider class of
functions.

We give an outline of the paper and then compare our results with those of
Gurevic-Savchenko and Sarig.

Section 1 starts with two natural definitions of topological pressure for continu-
ous functions on two-sided countable state Markov shifts, one via approximations
from inside, the other more computational via growth rates of weights of loops.
Under the mild distortion condition D, (f)}/n — 0 these two notions agree, which
allows one to compute the pressure for such functions via loop-counting methods
at any vertex a.

The measure theoretical pressure is introduced in Section 2 and a variational
principle is shown for functions f satisfying D,,(f)/n — 0.

Sections 3 and 4 contain the study of equilibrium states. We give a new
definition of functions which are Z-recurrent at a vertex a. In the finite entropy
case the function f = 0 is Z-recurrent if and only if the Markov shift is positive
recurrent. Then we assign sequences of measures defined on periodic points that
visit @ to a function which is Z-recurrent at a. Now Z-recurrence (where we
additionally assume Py,,(f) < oo and the distortion property sup,, Dy.(f) < o)
ensures that these sequences are tight, thus they have weak accumulation points.
In Section 4 we study when such an accumulation point is an equilibrium state.

Section 5 shows that all the results easily carry over to the setting of one-sided
Markov shifts.

In Section 6 we briefly discuss the different distortion properties. In particular,
we show that Hdlder continuous functions satisfy the condition sup,, D, (f) < oo,
and give an example for a non-Hoélder continuous function where our results
apply.

In Section 7 we apply our main result about equilibrium states (Theorem 4.2)
to the Gauss map.

Finally, Section 8 discusses when it is possible to define the topological pressure
by the growth rates of the weights of all periodic points instead of just considering
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those that visit a fixed vertex.

In his work [S1, S2}, Sarig considers Hélder continuous functions on countable
state Markov shifts. Holder continuous functions satisfy the distortion property
sup,, Dy (f) < oo, Observation 6.3, and thus also D, (f)/n — 0. His notion of
topological pressure coincides with ours for Holder continuous functions, as The-
orem 1.9 shows. Sarig proved the Variational Principle for Holder continuous
functions where the associated Ruelle-Perron—Frobenius operator maps the con-
stant function 1 to a bounded function (i.e., [|[£¢1||lc < 00). This might be a
severe restriction. It implies sup . x f(z) < 00, thus excludes all functions f with
inf,ex f(x) > —oo on Markov shifts given by a graph with unbounded in-degree,
as the Bernoulli shift or, as an example with finite entropy, the Markov shift
given by the graph with vertex set N and for each n € N there is an edge from n
ton+ 1 and an edge from n to 1. Since Holder continuity implies D,,(f)/n — 0,
Theorem 2.4 generalizes Sarig’s Variational Principle. He showed that an equilib-
rium state (in a more general sense) exists for positive recurrent functions (and
is actually unique). Sarig’s results from [S1, S2] imply that functions positive
recurrent are also Z-recurrent in the sense of Definition 3.1.

In [GS], Gurevic and Savchenko consider functions which depend only on the
zero-coordinate. These are Holder continuous, but do not have to satisfy the
condition ||£f1||oc < c0. Therefore their results do not follow from Sarig’s results.
They prove the Variational Principle for bounded functions. Their notion of
positive recurrence coincides with that of Sarig, but their notion of equilibrium
states is different from Sarig’s and from our definition. However, using [GS,
Prop. 4.3] one can show that an ergodic good measure (Definition 2.1) is an
equilibrium state in the sense of Definition 3.1 iff it is an equilibrium state in the
sense of [GS]. They show that a function is positive recurrent iff an equilibrium
state exists and in this case the equilibrium state is unique.

The referee has pointed out that Sarig improved the above-mentioned results
to the case of functions with sup f < oo, summable variations, and which not
necessarily have to satisfy the condition ||£f1||cc < 00, [S3]. These new results
then also imply the above-cited results of [GS].

We fix some notation. Let E be a countable set. Let EZ be endowed with the
product topology of the discrete topology on E. The left shift map o: E% — E?% is
the homeomorphism defined by (o), := 2,41, n € Z for all x = (x,)nez € EZ.
Given a subset X of EZ, a point x = (2,)nez € X and integers —co < n < m <
oo let z[n,m] and x[n,m + 1) denote the block xy,, ..., 2, and let [z, ..., Tm]
denote the cylinder set {y € X|y[n, m] = z[n, m|}. The induced topology on X is
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generated by the cylinder sets. If X is shift invariant, o(X) = X, then (X, o|x)
is called a subshift. We denote the points of period n in X by Per,(S) :=
{z € X|S™zx = z}.

Let G = (V, E) be a graph with a countable vertex set V and a countable set
of directed edges E. We consider only graphs where each vertex has at least one
out-going and one in-coming edge. Let i: £ — V and t: E — V denote the initial
and terminal vertex maps. The Markov shift (X, S) defined by G is a subshift
of (EZ, o) where

X :={z = (2n)nez € E%|t(2n) = i(xny1) for all n € Z}.

That means X is the set of bi-infinite walks on the directed edges of the graph G,
and S is the restricted shift map. We want to emphasize here that we consider all
graphs with countable vertex and edge set, and not only graphs where hetween
two vertices there is at most one edge. So we definitely allow parallel edges.
In this sense our approach is more general than that of Sarig, and Gurevic and
Savchenko.

Note that X is compact iff G is a finite graph iff (X, S) is a shift of finite
type (SFT). Transitivity of S means irreducibility of G, that is for every pair of
vertices o and 8 of G there is a path from « to 8. Only transitive Markov shifts
are considered in this paper. We say that a block w € E*, k > 1, is an S-block or
a path in S if there is a point z € X with z[1, k] = w. Let |w| denote the length
k of the block w.

Remark 0.1: 'We consider loop counting in different matrix presentations of a
Markov shift; later, in Remark 3.4, we shall do the same for the notion of positive
recurrence.

Let G = (V,E) be a countable directed graph defining a transitive Markov
shift X = {x = (¥p)nez € EZ|t(x,) = i(xny1) for all n € Z}. Let A be the
matrix indexed with the vertex set V and A, o = #{e € Eli(e) = a,t(e) = d'}.
Note that A, o = oo is allowed.

Now define a 0-1 matrix B, indexed by the edge set E, by B = 1 iff t(e) =
i(e'). Let

X' :={a' = (})nez € E’Z|Bgc;1,$:l+l =1 for all n € Z}.
Note that obviously X’ = X. Let H be the graph defined by the matrix B, i.e.,
the vertex set of H is Vg = E and for e, ¢’ € Vg there is an edge from vertex e
to vertex e’ iff B, . = 1. Note that H has no parallel edges.
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We have that BY, = #{z € Perp(X)|zo = e}. Thus B}, < A}, where
a = i(e) is the initial vertex of the edge e in the graph G. Now fix a loop u
in G beginning with edge e. Then to a loop w in G of length n at vertex a
assign the point = € Per, |, |(X) with z[0, |u|]) = u, z{[u|, |u| + n) = w. This
assignment is injective and shows A% , < BL™ . Thus limsup, 1/nlog A7, =
limsup,, 1/nlog BY . Since limsup, 1/nlog BY, is independent of e, [G], thus

also limsup,, 1/nlog A} , is independent of a. Note that Ay, = oo for some a,
a’ € V implies limsup, 1/nlog A} , = oc.

We recall some basic facts about the pressure for continuous functions on
compact subshifts.
Given a space X with a selfmap S and a function f: X — R let

n—1
Spfr = Zf(Six), neN, reX.
i=0
Suppose that (X, S) is a compact subshift and f: X — R continuous. Let 3
be the zero-partition, i.e., the partition into the sets [t]p := {z € X|z¢ = i}.
Let B(n) := BV S™IBV S23v...v S~1g Let W,(f,S) = Wo(f) :=
> Bep(n) SWPcc €XP(Snfz). The sequence Wy, (f) is submultiplicative, thus P(f)
= limy, 00 (1/n) log W, (f) exists and agrees with inf,, (1/n) log W, (f).
The number P(f) € R is the topological pressure of f.
The above definition is equivalent to a more general one via spanning sets [W1],
which can be used whenever X is compact metric and S, f are both continuous.
But the above suffices for our purposes.

1. Topological pressure

For continuous functions f on transitive Markov shifts we define the inner pres-
sure P;,(f) by approximations from inside and the topological pressure Py, (f)
by counting weights of loops at fixed vertices. These two notions agree if the
function satisfies a mild distortion property.

Let (X, 5) be a transitive Markov shift given by a countable directed graph
G = (V,E) and f: X = R a continuous function.

Definition 1.1: The inner pressure of f is
Pin(f,S) :=sup{P(f|y)|(Y,Sly) is a transitive SFT inside (X, S)}.

One important question is when this quantity can be computed by loop-
counting methods, i.e., when P;,(f) = Piop(f), where the latter is defined as
follows. Recall that i: E — V denotes the initial vertex map.
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Definition 1.2: For a € V and n € N let P(n,a) := {z € Per,(S5)|i(zo) = a}.
Let
Zn(f,S,a) = Z exp(Sp.fx)
z€P(n,a)
where Z,(f, S,a) := 0 if P(n,a) = 0. The topological pressure of f is

Piop(f, S) := sup limsup 1 -log Z,.(f, S, a).

a€V n—ooo N
If S is clear from the context we simply write Pi,(f), Zn(f,a), and Piop(f),
respectively. Using the notation from Remark 0.1, in the case f = 0 we have
Zn(f,S,a) = A7 , and thus

n
e,e?

1 1
P,op(0) = limsup - log A7 , = limsup — log B
, 'SP

K3

by Remark 0.1. Since limsup,, 1/nlog BY, = sup{hiop(Y)|Y a SFT inside X'},
[G], and X' = X, we obtain P,,,(0) = P;,(0). For general continuous functions
f we will show Piop(f) = Pin(f) (and in fact this number can be calculated
by considering loops at any vertex a) whenever f satisfies the weak distortion
property D, (f)/n — 0, where the distortions are defined as follows.

Definition 1.3: The nth distortion of f is

D, =D, (f)=D,{f,S):= sup |Spfz — S, fyl € [0, 00l
z,y€X,z[0,n)=y[0,n)

Remark 1.4: In general all the distortions may be infinite. However, if (X, S) is
a SFT then f is bounded and thus all D, (f) are finite. Moreover, D,(f)/n — 0
since f is uniformly continuous (see Section 6).

The distortions allow one to compare values of the functions S, f on certain
periodic points. This will be used repeatedly, for example to prove weak super-
multiplicativity properties of the weights Z,,(f, ¢) as in Lemma 1.6.

LEMMA 1.5: Let ny,no,...,n5 € N. For each tuple (xl,...,xk) € P(ni,a) x
P(ngy,a) x---x P(ng,a) there is a unique point ¢(z!,...,2¥) € P(ny1+-+-+nk,a)
with ¢(z*,...,zF)[0,n1 + -+ ng) = 21[0,n1)x%[0, na) - - - 2*[0, ni) and it is true
that

k
<> D (f)-
i=1

Proof: By the triangle inequality the left hand side is bounded by
S 1S fat = Sy fSMTFim1g(r L k)| Since

k
> Sn f3t = Snygn ST, 20)
i=1

(Sn1+“'+ni—1 ¢(J;1, Cey .’L'k))[os ni) = xz[o’ ni)
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the th term of this sum is bounded by Dy, (f). ]

LEMMA 1.6: Let a be a vertex. Then

Zn(f7a)k S Z‘nk(fa (l) . exp(k ’ Dn(f))'

for all k € N and all n € N with P(n,a) # 0.

Proof: Note that P(n,a) # 0 ensures Z,x(f,a) > 0, thus the lemma holds
trivially if D, (f) = oo (which can happen only in the non-compact case). Lemma,
1.5 applied with n; = n, 1 < i < k, shows that

k
exp ( > Snfx'i) < exp(Sknfo(z', ..., 2%)) - exp(k - Dn(f)).
i=1

Since ¢ is injective the result follows by summation over all (z!,...,2%) €
P(n,a)*. ]

First we consider the SFT case. Counting weights of loops at a fixed vertex
gives a formula as well as lower bounds for the pressure.

LemMMA 1.7: Let (X,S) be a transitive SFT with period p defined by a finite
graph G. Let f: X — R be continuous and a a vertex of G. Then

@ PU) = Jim = log Zunlf.a),

(b)y P(f)> %loan(f,a) - Bﬁn(ﬁ for alln e N.

Note that (a) implies P(f) = P,op(f) in the sense of Definition 1.2.

Proof:  (a) Let 8(n) and W,(f) be defined as at the end of Section 0. Since
#(P(n,a) " B) <1 for all B € 3(n), we obtain

Zn(fia) < ) supexp(Safz) = Walf)
Bean) €
for all n. This shows that limsup(1/n)log Z,(f,a) < P(f). On the other hand,
there is an N such that for every B € 3(np) there is a point 25 € P(np+ Np,a)
such that S’z € B for some 0 < i < Np. Any such assignment is at most Np to
1. For every x € B we have |S,,,fx — Sppinpfza| < Np-sup |f|+ Dpp(f), thus

Wap(£) S D" exp(Supsnpf2m + Np-sup|f|+ Dyy(f))
Bep(np)

< Np- Zppinp(fia) - exp(Np-sup |f|+ Dip(£))-
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Thus P(f) = lim(1/np) log Wy (f) < liminf(1/np)log Z,,(f, a), since D, (f)/n
— 0 by Remark 1.4. Altogether we have shown that lim(1/np)log Z,,(f,a)
exists and equals P(f).

(b) This is trivial if P(n,a) is empty. If P(n,a) # @ then Lemma 1.6 shows
that (1/n)log Z, — D, /n < (1/nk)log Z,, for all k. With & = mp, m — oo the
latter approaches P(f) as shown in (a). |

Now we return to the general case of countable state Markov shifts.

PROPOSITION 1.8: Let (X, S) be a transitive Markov shift of period p given by
a graph G. Let f: X = R be continuous and a a vertex of G. Then

L. 1
(a) P, (f) < hnm_’géf % log an(f7 a)7

B Pulf)+ 2D

Note that (a) implies Pi,(f) < Piop(f) in the sense of Definition 1.2.

1
> m log Z,,(f,a) for all n.

Proof: (a) Let ¢ > 0 and choose a SFT Y C X with period p which is given
by a subgraph of G that contains ¢ and such that P(fly) > P (f) — ¢ if
P,,(f) < oo and such that P(f|y) > 1/e if Py, (f) = oo. Then, by Lemma
1.7a, P(fly) = lim(1/np) log Z,,(fly, ) < liminf(1/np) log Z,,(f,a), the latter
since Znp(fly,a) < Zpp(f,a) for all n. With € — 0 the result follows.

(b) We may assume that D,(f) < co and P(n,a) # 0, since otherwise the
inequality is trivial. First assume that Z,(f,a) < co. Given 0 < v < 1 choose
a SFT Y C X given by a large subgraph of G that contains a and satisfies
Zn(fly,a) > v+ Zn(f,a). By Lemma 1.7b

Dy (f) Dy (f]y)

P; (f)+T > P(fiY)+——n— > %10an(f|y,a) >

log~y
n

1
+; log Z,(f,a).

The result follows with v — 1.
If Z,(f,a) = oo then choose Y such that Z,(f|y,a) > 1/v. Lemma 1.7 implies
that Py, (f) + Dn(f)/n > —(1/n)log~; the result follows with v — 0. |

The main result of this section shows that the pressure of f can be computed
by counting the weights of loops at any fixed vertex whenever f satisfies a weak
distortion property.

THrOREM 1.9: Let (X, S) be a transitive Markov shift of period p given by a
graph G. Let f: X — R be continuous with D, (f)/n — 0. Then

1 . 1
Puop(f) = Pin(f) = lim == - 10g Znp(f, ) = limsup Z-log Zn (f, @)

n—0o0
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for every vertex a of G.

Proof: If Py, (f) = oo then Proposition 1.8a shows that
00 = nll)n;o 1/np - log Zny(f, a).

Now suppose that P, (f) < co. Then by Proposition 1.8 and D, (f)/n — 0 we
obtain

P, (f)<hm1nf—loanp(f, a)

n—00 NP

< hmsup — lOanp(f, a) < P (f).

n-—>0
Thus P, (f) = lim, 00 (1/np) - log Zn,,(f, a) = limsup,,_, . (1/n)log Z,,(f,a) for
all a, the latter since Z,(f,a) = 0 if n is not a multiple of p. By definition this
implies Pin(f) = Prop(f)- |

Remark 1.10: Given a vertex a and n, m € N such that P(n,a) # 0,
P(m,a) # 0, then

Zn(f.a) - Zm(f,a) £ Znim(f,a) - exp(Dn(f) + Din(f)).

The proof of Lemma 3.7 in Section 3 shows the argument. In the case
D, (f)/n — 0 this weak supermultiplicativity can be used to give a direct proof
that 1/np - log Zp,(f, a) is a convergent sequence (where p is the period of the
Markov shift). However, the above approximation arguments are still needed to
identify the limit.

2. The Variational Principle

In this section we state and prove the Variational Principle (Theorem 2.4) for
continuous functions f with D,(f)/n — 0. This extends results of [G], [GS],
[S1]. At the end of this section we supply a variation of the proof, more in the
spirit of P. Walters’ proof for compact spaces [W1, Thm. 8.6+Thm. 9.10].

Definition 2.1: Let (X,S) be a transitive Markov shift and f: X — R a
continuous function. A shift invariant Borel probability measure gz on X is a
good measure for f if [ f~du < co. The measure theoretical pressure of f is

Prcasure(f,S) :=sup{h,(S /fdum is a good measure for f}.
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Remark 2.2: The quantity h,(S)+ [ fdu would still make sense if [ f~du = co
but h,(S)+ [ fTdp < oo. However, in this case h,(S)+ [ fdp = —o0, ie., such
measures do not contribute to Ppeasure(f, S)-

Remark 2.3: The standard Variational Principle for compact spaces implies
1mmediately that Rn (f) S Pmeasure (f)~

THEOREM 2.4 (Variational Principle): Let (X,S) be a transitive Markov shift
and let f: X — R be a continuous function with D,,(f)/n — 0. Then

Ptop(f) =P (f) e Pmeasure(f)‘

Proof:  We give a proof in the mixing case. The general case, where S has
a period p € N, follows by considering arithmetic progressions n = mp. By
Theorem 1.9 and Remark 2.3 we have Py, (f) = Pin(f) < Preasure(f), thus it
remains to show that Ppeqsure(f) < Prop(f). We may assume that Pop(f) < oo.
Let i be a good measure for f.

For N € N let fn: X — R be defined by fn(z) := min(f(z),N). Since
J f~dp < oo we have J fndp — [ fdp by monotone convergence, thus it suffices
to show that

hu(S) + / Fndp < Pip(f) forall N €N,

Fix N € N. Identify the set E of edges with N; this induces an ordering on
E. We first choose a suitable generating sequence ay, k € N, of finite partitions
of X. Fix a sequence (ry)xen of integers with r, > k for all k£ and such that
p({r € X|zo > ri}) - log(k +2) — 0. Let oy be the partition of X into the sets

[alo:={x € X|zo=a} fora <k,

Di:={z e X|k<wzo<rg} and

Cr:={z € Xl|zo > 15}
Thus oy is a partition with k& + 2 atoms and, by the choice of the sequence 7,
we have

Jim u(Cy) - log(#ax) = 0.

Since the sequence ay, k € N is generating, h,(S) = limg_,o0 hy (i, S). Now fix k
for the moment and let o := . Let an) :=aV S lav S 2aVv...vS§—(nla.

For P € a(n) let g(n,P) = sup{Snfnvz|r € P}. Then g(n,P) < oo since
sup fyn < N < 0. For A,B € o let

a(n, A, B) = {P € a(n)|P is contained in AN S~ "~V B}.
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By S-invariance of g we obtain

/mw=%/&mw

LYY g ) u)

A,B€a Pea(n,A,B)
=1 > uw(Ans~=YBy. N~ g(n,P)-u(PlANS~ "7V B).
n A,Bea Pca(n,A,B)

Note that 0 < H,(aV S~ Da) < 210g(#a) implies

IA

lim lHu(a( )) = lim H( (n)|a v S~(Dq),

n—oo N n—oo N

This gives
hulan, §) + / Fvdu

= lim — H ulaln /S fadyl

n—oo

1
<limsup— Y w(AnS~™=YB). N w(PlAnST"Up)
nooo 1 Bea P€a(n,A,B)

-[~log u(P|AN S~ "~V B) 4 g(n, P)]
< lim sup ! Z p(AN S==LB) . log < Z exp(g(n, P)))

noee ™A Bea Pca(n,A,B)
The last estimate holds by [W1, Lemma 9.9], which states that given real num-
bers ai,...,a; and p; > 0 with E 1P = 1, then Zlepi(ai —logp;) <
log("i_, exp(a:)).
We estimate the sequences (1/n)108(3_ pen(n.a.5) €XP(9(n, P))).
First consider the case that A = C}, or B = Cy. The rough estimate fy < N
gives

A

g ewlenP)) < thog( S eln )

" Pea(n.A,B) Pea(n,A,B)
= Llog(#a(n, A, B) -exp(n- N))
< log(#a) + N.
Thus
lim sup 1 Z p(AnS( B) -log ( Z exp(g(n, P))>

n
n=0 4 Bea,A=Cy or B=Cy Péea(n,A,B)

<2u(Cr) - (log(#ax) + N).
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In the case that A # Cy and B # Cj, let d be a fixed vertex of the graph G.
By Theorem 1.9 we know Piop(f) = limy, (1/n) log Z,(f, d).

Fix M so that D,(f) < oo for all n > M. For every edge a < ry let w(a)
be a path starting in vertex d and let u(a) be a path ending in vertex d such
that w(a)au(e) is a path. Since S is mixing, we may assume that for some
m > M these paths have length m = |w(a)| = |u(a)| for all @ < 7. Since
D, (f) < oo, there is some My, such that |S,, fo| < My whenever [0, m) = w(a)
or x[0,m) = u(a) for some a < ry.

Now consider A, B € « with A # Cr and B # Cy. Let e > 0 and n > M.
For each P € a(n, A, B) choose a point z¥ € P with g(n, P) < S,fvzf +e.
Then in particular g(n,P) < S,fz¥ +¢e. Let w” = 2P[0,n),a = xf and b =
xP . Now z¥ € P implies a,b < i and thus w(a)wFu(b) is a loop of length
n + 2m at vertex d. Let y* € P(n + 2m,d) with yP[0,n + 2m) = w(a)wFu(b).
Since (S™yF)[0,n) = z¥[0,n) we get S, f(zF) < Snf(S™yP) + Dy, (f). Since
yF[0,m) = w(a) we get Sy f(yF) > —Mj and since (S™*™yP)[0,m) = u(b) we
get S f(S™H™yP) > —My. Thus exp(SnfzF) < exp(SntomfyP +Dn(f) +2My).
Thus

Z expg(n, P) < Z exp(Sn f(zF) +€)

Pea(n,A,B) Pea(n,A,B)
< Z eXp(Sn+2mf(yP) + Dn(f) +2Mj +€)
Pca(n,A,B)
= exp(Dp(f) +2M; +¢) - Z exp(Sn+2m fy)

Pea(n,A,B)
< exp(Da(f) + 2Mk + €) Zptom(f, d)
and (D, (f) + 2My +¢)/n — 0 implies
1 o1
lim sup — lOg ( Z expg(n, P)) S lim — lOg Zn+2m (f7 d) = Ptop(f)v
n T Pea(n,A,B) mon

the latter by Theorem 1.9. Combining the above estimates gives

hu(ag, S) + /deu
1

< limsup — Z w(ANS~ 1By . log ( Z expg(n,P))

nee T 4,Bea Pca(n,A,B)

< Y wANSTCTUB). Puy(f) + 2u(Cy) - (log(#aw) + N)
A,Beay—{Cr}

< Piop(f) + 2u(Cy) - (log(#ax) + N).
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Note that limg_ 00 2u(C)- (log(#ax)+ N) = 0 by construction, thus with k£ — oo
the above yields h,{S) + [ fndp < Piop(f) and the Variational Principle is
proved. [ |

Remark 2.5: We outline an alternative proof, more in the spirit of P. Walters’
proof of the Variational Principle for compact spaces. Now the distortions will
enter the picture just at the very last step. It makes one believe that the condition
D, (f)/n — 0 is quite natural for a Variational Principle to hold; on the other
hand, it makes it hard to speculate about possible weakenings of this condition.

By Theorem 1.9 and Remark 2.3 it suffices to show Ppeasure(f, S) < Pin(f,S).

1. Prove this for functions f which depend only on the zero coordinate. This
can be done as in the proof of Theorem 2.4, but the estimates simplify since all
the Dy (f) are zero.

2. Show Ppeasure(f2 S} < Pin(f,S) + D1(f) for any continuous function f. If
Dy (f) = oo this is trivial. If D;(f) < oo then h(z) := sup{fylyo = zo} defines
a function h: X — R which depends only on the zero coordinate and satisfies
f <h < f+4Di(f). Thus Pip(h,S) < P (f,S) + D1(f), [W1, Thm. 9.7] and an
S-invariant measure is good for f iff it is good for 4. Thus, by f < k and step 1
we get

Pmeasure(f’ S) S Pmeasure(hﬂ S)
= P'm(hv S)
< P (f, S) + Di(f).

3. Now apply the above to the shift (X, S™) endowed with the function S, f,
and link the occurring quantities to those for S and f (this is done in Lemma
2.7 at the end of this section). Thus the proof proceeds as follows:

1
Pmeasure(fv S) S gpmeasure(snfa Sn) by Lemma 2‘73‘

1
< = Pin(Saf, 8" + - Di(8,f, 5" by step 2

3

< Pa(f.8)+ = Da(£,9)

by Lemma 2.7b and since D,,(f,S) = D1(S,f,S™). Now D, (f,S)/n — 0 implies
Prcasure(f,S) < Pp(f,S), which finishes the outline of the alternative proof.

Remark 2.6: One might wonder if Step 1 is a simple consequence of Gurevic and
Savchenko's Variational Principle for bounded functions which depend only on
the zero coordinate [GS]. This is not so, since P, (f) = oo for bounded functions
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f on a Markov shift with infinite Gurevic entropy. Thus one cannot approximate
a function f < 0 with inf f = —oc0 and P,p(f) < oo by bounded functions
and deduce the result. Also Sarig’s result is not strong enough, because he uses
the condition ||£1||c < oo. This implies sup,cx f(z) < oo and excludes all
functions f with inf,.cx f(x) > —oco on a Markov shift given by a graph with
unbounded in-degree.

Finally we state and prove the lemma used in the last step above.

LEMMA 2.7:

(a') n: Pmeasure(fa S) S Pmeasu're(snfa Sn),
(b) n- Pin(f, ) > Pin(Snf, S™).

Proof: (a) Let u be a good measure for f on the Markov shift (X, S). Then p is
also S™-invariant. Obviously S, f* > (S, f)*. Replace f by —f; now (—f)* =
[~ yields Sp(f7) = (=S f)t = (Suf)™. Thus [(Suf)~dp < [Su(f7)dp =
n- [ f-dp < oo and g is a good measure for S, f on the Markov shift (X, S™).
Since f > —f~ and [f~dy < oo we get n- [ fdu = [S,fdu. This and
n+h,(S) = h,(S™) show that n- (h,(S) + [ fdu) < Preasure(Snf,S™).

(b) First note that

Py (f,S) =sup{P(f|y,S|y)|¥Y C X,Y compact and SY = S}.

Now let ¥ € X be compact with S”"Y =Y. Let Z =Y USY uU-.-uS"'Y.
Then SZ = Z and Z is compact. Thus Py, (Snfly, S™|y) < Piop(Snflz, 5™ 2)
=n-Piop(flz,S|z), [W1, Thm. 9.8]. By the first remark, which holds for S,, f, S™
as well, the result follows. [ |

3. Z-recurrence

Suppose f is a continuous function on a transitive Markov shift. We define
and discuss the notion of Z-recurrence of f at a vertex a. In the case f =
0, Pop(f) < oo this turns out to be equivalent to the notion of positive recurrent
Markov shifts. Then we assign sequences of measures to a function that is Z-
recurrent at a vertex a and satisfies Py, (f) < 0o and sup, Dy (f) < co. These
measures will be supported on periodic points that visit ¢ and Z-recurrence of f
ensures the existence of weak accumulation points (any such sequence is shown
to be tight). In the following section we give conditions which imply that such
an accumulation point has to be an equilibrium state.
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Throughout this section (X, S) is a transitive Markov shift given by a countable
directed graph G = (V, F) with initial vertex map : E -V, and f: X > Risa
continuous function.

For any vertex a and n > 1 we defin P(n,a) = {z € Per,(S)|i(zo) = a} and
Zp(f10) = 3 e pina) €XP(Sn fT). Now let

P*(n,a) = {x € P(n,a)|i(xy) #afor 1 <k<n-—1} and
Zi(f)= ), exp(Sufx).

x€Px{n.a)

Definition 3.1: The continuous function f is Z-recurrent at a vertex a if
Zp{f,a) < oo for all n and

= Zalf.0)
;”zn(f, a)

where ZX(f,a}/Z,(f,a) :=0if Z,(f,a) =0 (i.e., if P(n,a) = 0).

< o0,

Observation 3.2: Later we will mainly consider functions f with Pi,p(f) < oo
and D, (f) < oo for all n. In this case Z,(f,a) < oo for all n and all a € V,
which can be seen as follows. Fix n. The condition Pi,,(f} < oo implies that
there is a k with Z,;(f,a) < cc. If P(n,a) = 0 then Z,(f,a) = 0 by definition,
and if P(n,a) # 0 then Z,(f,a) < co by Lemma, 1.6.

Z-recurrence holds trivially in some important special cases. For example,
suppose that the lengths of the first return loops at a are bounded (think of the
Bernoulli shift given by a graph with a single vertex a). Then any function f
with sup, Dy (f) < 0o and Pip,(f) < o0 is Z-recurrent at a just because the
Z*(f,a) vanish eventually.

QUESTION 3.3: Suppose that f is Z-recurrent at some vertex. Is f Z-recurrent
at every vertex?

Remark 3.4: We indicate that this holds for the function f = 0 under the hy-
pothesis P;op(f) < 00 since in this case Definition 3.1 coincides with the definition
of positive recurrent Markov shifts. But first we give an argument that positive
recurrence does not depend on the matrix presentation chosen for the Markov
shift. We give the argument for the mixing case; the general transitive case then
follows by using [K, Lemma 7.1.36].

We use the notation from Remark 0.1. Then Z, = Z,(0,a) = A}, and thus
Piop(0) = limsup(l/n)log Z, = limsup(1l/n)log A}, = limsup(1/n)log BY,.
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Let A > 0 so that P,,p(0) = log A. We show that A is positive recurrent iff B is
positive recurrent. For that, define the V X Vg matrix R with entries 0 or 1 by
R, =1iff i(e) = a in the graph G. Define the Vi x V matrix S with entries 0
or 1 by Se, =1iff ¢(¢) = a. Then

(RS)a,a' = Z Ra,eSe,a’ - #{8 € Vle(e) = a’t(e) = al} = Aa,a’a

eeVy

(SR)e,e’ = Z Se,aRa,e' - Rt(e),e’ = Be,e’-
a€V

Thus we have shown RS = A and SR = B. Suppose that B is positive recurrent.
Then, by [K, Thm. 7.1.3 (d)], A < oo and there are vectors [, r indexed by Vg with
l,r>0,l-r <ooand Br = Ar,IB = Al. Since r > 0 and R is a 0-1 matrix with
no rows zero, we obtain Rr > 0 and A(Rr) = RSRr = RBr = RAr = A(Rr),
and since [ > 0 and S is a 0-1 matrix with no columns zero we obtain (.S > 0 and
(IS)A =1SRS =1BS = A(lS). Furthermore (IS) - (Rr)=ISRr=1Br=\-Ir <
oo. Now [K, Lemma 7.1.16] shows that A is recurrent, and thus [K, Thm. 7.1.3
(d)] implies that A is positive recurrent. The argument is symmetric in A and
B, since it does not use the fact that B is a 0-1 matrix. Thus we have shown A
is positive recurrent iff B is positive recurrent.

Now we show that A is positive recurrent iff f = (0 is Z-recurrent at any vertex
a € V. If A is positive recurrent, then [K, Thm. 7.1.3 (f)] shows that for some
¢ > 0 and all large n we have Z,(0,a) = A7, > c-A". Thus, for N large,
S NN 22 <Yy e ZEAT™ < oo and, since all Z,(0, a) are finite, the
function f = 0 is Z-recurrent at a.

We give an argument for the converse (however, there should be a more el-
ementary one). If > >° n-Z%/Z, < oo at some vertex a, then Theorem 4.2
shows the existence of an equilibrium state for f = 0, which is now a measure of
maximal entropy for the shift S. Thus since X’ = X, B is positive recurrent [G,
see also K, Prop. 7.2.13] and thus, as seen above, A is positive recurrent. |

QUESTION 3.5: Is there an elementary proof that in the finite entropy case the
function f = 0 is Z-recurrent iff the Markov shift is positive recurrent?

Under the assumption Z,(f,a) < oo for all n we are going to define sequences
of invariant probability measures supported on periodic points. These periodic
points are built from suitable subsets of first return loops at a. It will often be
possible to consider the set of all first return loops (Theorem 4.2.d, the Gauss
map example in Section 7). However, considering subsets of first return loops will
have certain advantages in future applications. For example, it shows that the
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statement of Theorem 4.2.b is non-void, since the assumptions of this theorem
can always be satisfied with suitable finite subsets L, of first return loops and
then the associated measures are trivially good measures. That is the reason why
we deal with the extra complication of considering subsets of first return loops.
We first describe the abstract setup.
Let & € P*(k,a). Then we say that x[0, k) is a first return loop at @ of length
k. Let L be an arbitrary subset of the set of all first return loops at a. Define

I

P(n,a,L):={z € P(n,a)|z[0,n) = wy---wr,w; € L,1 <i<r} and
Zn,L(fs (l) L= Z eXp(San).

r€P{n,a,L)

Whenever a function f and a vertex a have been fixed, then we also write
Zn,L+Zn, and Z) where these are meant to be functions of f and a as defined
above.

Let 6, denote the probability measure with §,(A) = 1 iff = € A, for every Borel
set A.

Definition 3.6: Suppose f is a function with Z,,(f,a) < oo for all n and L a set
of first return loops at vertex a. Then, for every n € N with P(n,a, L) # 0, we
define probability measures vy, = vy, 1, and pn = pin.1 by

1= . S, -4 d
Up, 71 Z exp(Spfz) -6, an
z€P(n,a,L)
1 n—1
Hn t = n ; Sty

Note that S"v,(A) = v,(A) for every Borel set A and thus Sp, = g, ie.,
lin 18 shift invariant.

We supply a little arithmetic for the Z, ; which will be used to prove the next
lemma.

LEMMA 3.7: Suppose that Z,(f,a) < oo for all n and C := exp(sup,, D, (f)) <
0o. Let L be a subset of the first return loops at a. Then

Znr Zig, <C? Znyry, foralln, k.

Proof: Suppose P(n,a,L) # 0 and P(k,a,L) # @ (otherwise the lemma holds
trivially). Then Lemma 1.5 applied with n; = n,ng = k shows exp(Z?=1 S, fxt)
< exp(Spirfo(zt, 22)) - C2. Since ¢ restricted to P(n,a,L) x P(k,a,L) is an
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injective map into P(n + k,a,L), the result follows by summation over all
(z',2%) € P(n,a,L) x P(k,a,L). |

The following estimate for the v,,-measures of certain cylinder sets will be used
repeatedly.

LEMMA 3.8: Suppose that Z,(f,a) < oo for all n and C := exp(sup,, D»(f)) <
0o. Let k < n. Suppose that L is a set of first return loops at a with P(n,a,L) #
0,P(k,a,L) # 0, and Zy 1, > vZy, for some vy > 0. Let v, = vy, 1, be the measure
from Definition 3.6. Then for any set A = {x|z[0,k) € K} where K denotes
some subset of the loops of length k at a we have the estimate

Un(STIA) = v, 1 (ST7A)

<yiet-zt Y exp(Sfr) forall0<j<n.
z€ANP(k,a)

In particular, the same estimate holds for p1,,(A).

Remark 3.9: With L' denoting the set of all first return loops at a the above
estimate becomes v, 1(S77A) < v~ 1C* vy, 1 (A) for all 0 < j < n. If additionally
L = I/, then one can obviously choose v = 1.

Proof: 1In the case k = n the inequality is easy to check (or proceed as in the
following proof but omit the z-coordinate). Thus assume k < n. If x € S77A
contributes to v, (S77A) then £ € S~IAN P(n,a,L). Define a map 9: ST7AN
P(n,a,L) — (ANP(k,a))x P(n—k,a, L) by 9(z) = (y, z), where y € P(k, a) with
y[0, k) = (S7x)[0, k) and z € P(n—k, a, L) with 2[0,n—k) = (S?z)[k,n). Then for
(y,2) = ¥(x) we have that S, fr = S, f(Siz) < Sk.fy+Di+ Sn_fz+Dn_ and
thus exp(S, fz) < C? - exp(Sk.fy)exp(Sn—if2). Since 9 is injective, summation
over all z € S~ AN P(n,a, L) yields

Zpp - vn(STIA) < C? ( > eXP(Skfy)> * Zyp—k,L-
yEANP (k,a)

By Lemma 3.7, Zy,_.1./Zn,1. < C?/Z.1 and the result follows since Z,1 > vZx
by assumption. 1

If for each n a large enough set L, has been chosen, and if f is Z-recurrent at
a, then the sequence of measures i, ;, will have good properties.

THEOREM 3.10: Suppose (X, S) is a mixing Markov shift given by a graph G =
(V,E) where E=Nor E = {1,...,Ng} for some Ng € N. Let f: X = R be a
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continuous function which is Z-recurrent at vertex a and satisfies Piop(f) < 00
and sup,, D, (f} < 0o. Let v > 0.
Assume that for each n with P(n,a) # @ a set of first return loops L, has been
chosen such that
ZL, 2> Vo, foralll <m < n.

Then pn, = fpnp, (as defined above) yields a sequence (indexed by
{n|P(n,a) # 0}) of invariant probability measures such that
{a) for every ¢ > 0 there is some N such that pu,(xo > N) < ¢ for all n,
(b) the sequence p.,, Is tight,
(c) for every = > O there is some N such that pn{z|i(z;) # a for 0 < s < N}
< ¢ for all n.

Proof: Let C = exp(D) where D = sup,, D,,(f,S). (a) Let ¢ > 0. For N,l € N
define By(N) = {z|2[0,1) is a first return loop at e and x; > N for some 0 < i < [}
and Au(N) = 3", c g, (vynp(.a) €XP(Sifx). Since 37,2, 1- Zf/Z; < oo there is some
N such that Y, IA;(N)/Z, < v-C~*-s. We estimate p,(xo > N). For that let
0<i<mn. Then

S'up(xo > N) = v, (z; > N)
i n—1

=3 3" valfala > Noxli k] € L))

F=0 k=i

-, mmax vn({z|zs > N,z[j,j+1) € L, }).

IA
vgt

If there is no first return loop of length [ in the set L,, then
vp({z|z; > N,z[j,j+1) € L,}) =0,

and otherwise Lemma 3.8 yields
. AN
va({zle; > Ny alj,j+1) € Ln}) < 7 lcu_é_),
!
This shows that

Ai(N)

k3
S, (g > N) <y~ lCt. Zl 7
{

and thus p,(zq > N) < e.
(b) We show that the sequence p, is tight. Let ¢ > 0. Fix a sequence &}, > 0
such that Q'Zkgo ek < €. For each k > 0 choose Ny, such that u,(zy > Ng) < &
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for all n. Let F := {x € X|zx < N, for all k € Z}. The set F is compact and
pn(F) <3 peg tin(Tr > Nig)) <223 p508k <e

(c) Since Yo" n+ Z%/Zy < oo there is some N such that >, nZ%/Z, <
v-C~*-e. If n < N then p,{xli(zs) # a for 0 < s < N} = 0. Now suppose
N <nandlet 0<i<n— N. By Lemma 3.8 we have that v, ({z|z[j,j+1) is a
first return loop at a}) <y~ 'C*- Z}/Z, for all < n. Thus

St {x|i(xs) # afor 0 < s < N} = v {ali(zs) #afori <s<i+ N}
i—-1 n-1

= Z Z v ({z|z(j, k] is a first return loop at a})
§=0 k=i+N

n
< Z - mazo<j<i - vo({z|2j, j + 1) is a first return loop at a})
i=N+2

n Z*
<yTiet ) 1k <e
I=N+2 L

by the choice of N. For n — N < i < n we have

Stv {x|i(zs) #afor0<s< N} =0. &

Remark 3.11: Let Zy := 1. Since the map
n—1
¢: (|J P*(k,a) x P(n — k,a)) U P*(n,a) > P(n,a)
k=1
defined by ¢(z,y) = z where 2[0,k) = z[0,k) and z[k,n) = y[0,n) is bijective,
Lemma 1.5 with ny = k and ny = n — k shows that

n n
C2N 7; 2ok < Zn<C* ) 70 Tk
k=1 k=1
Thus the sequence Z,, is not necessarily a renewal sequence, but not too far from
being one.

4. Equilibrium states

In the preceding section we constructed sequences of measures y, = piy, 1, asso-
ciated to a Z-recurrent function f and a sequence L, of sets of first return loops.
The sequence p, was shown to be tight whenever the sets L,, are large enough.
This implies the existence of weak accumulation points [P, Thm. 6.7]. The main
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result of this section states the following: if the measures u, are good for f,
then a weak accumulation point p of the sequence u,, is an equilibrium state if
it satisfies the necessary condition f fdp < oo, Le., if p is a good measure for
f, too.

We defined an invariant Borel probability measure y on (X, S) to be good if
J f~dp < oo. There is no loss of generality in considering only good measures u
for which h,(S) + [ fdu can be evaluated and agrees with P,,,(f), just because
Puop(f) > —o0.

Definition 4.1: An equilibrium state for f is a good measure p with #,(S) +
[ fdu= Py ().

For the function f = 0 we have that P, (f) equals the Gurevic entropy of S.
It is known that equilibrium states exist if Pi,p(0) = 00, and for P,op(0) < oo
an equilibrium state exists if and only if the Markov shift is positive recurrent,
[G]. The existence of equilibrium states (in a slightly more general sense) was
shown for Hélder continuous positive recurrent functions for which the Ruelle-
Perron-Frobenius operator maps the constant function 1 to a bounded function,
[S1]. We shall prove the existence of equilibrium states in a more general setting.
We only assume sup,, D,,(f) < oo instead of Hélder continuity and also cover
cases where the Ruelle-Perron-Frobenius operator is of very limited use since it
maps bounded functions to functions that are not real-valued (see Section 6 for
a discussion on the distortion property and Holder continuity.)

The main result of this section is the following.

THEOREM 4.2: Suppose (X,S) is a mixing Markov shift and f: X — R a
continuous function which is Z-recurrent at vertex a, satisfies Pop(f) < 0o, and
sup, D, (f) < co. Let ¥ > 0. Assume that for each n with P(n,a) # 0 a set of
first return loops L, has been chosen such that

ZmLy, 2 VL foralll <m <n.

Let

n—1
1 1 )
vn = - . Z exp(Spfr)-d, and p,:= - iz:% S'y,.

Tl z€P(n,a,Ly)

(a) The sequence of shift invariant probability measures i, is tight and has a
non-empty set of weak accumulation points A = A((fn)nen,P(n.a)20)-
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(b) Suppose that all py, are good for f (which, for example, is satisfied if all
the L, are finite). Then for every u € A we have

1 is an equilibrium state for f iff /f_du < 0.

(¢) Suppose sup,, [ f~du, < oco. Then every p € A is an equilibrium state. In
particular, f has an equilibrium state.

(d) Suppose inf,ex f(x) > —oc. Then any sequence py, as defined above is a
sequence of good measures for f. In particular, one might choose L, to
be the set of all first return loops for all n. Every 1 € A is an equilibrium
state. In particular, f has an equilibrium state.

Since (X, S) is mixing, P(n,a) # @ for all n large enough, thus p, will be
defined for any large enough n. Note that the conditions Z,, 1, > vZ, for all
1 < m < n can be satisfied with finite sets L,, and then the associated measures
tn are all good for f. If # Per,(S) < oo for all n (for example, if X is locally
compact), then using the whole set of first return loops at a for each L, gives a
good sequence of measures fi,.

In Section 7 we shall use part (c) of the theorem to study the Gauss map.

Proof of Theorem 4.2: (a) The sequence u,, is tight by Theorem 3.10, and the
space is separable complete metric, thus the set of weak accumulation points is
non-empty [P, Thm. 6.7].

Now suppose we have shown (b). Then

(c) If sup, [ f~dp, < oo, then in particular all u, are good for f. By (a),
A # 0. Let p € A. We show that u is a good measure for f and thus an
equilibrium state by (b). For each N € N the function fy = min(f~, N) is con-
tinuous and bounded and thus [ fydu = limgyoo [ fndpin, < sup, [ fndpn, <
sup,, [ f~dpn. By monotone convergence, [ fTdy = limy_ o [fndp <
sup [ f~dpn < co.

(d) The condition implies sup,, [ f~dun < oo for any sequence of probability
measures, thus (c) applies, in particular for the sequence where all L, are the set
of all first return loops.

(b) Let € A. If u is an equilibrium state then [ f~du < oo by definition.

Now suppose [ f~du < oo. Then h,(S)+ [ fdu < Piop(f) by the Variational
Principle, Theorem 2.4. Thus to prove that g is an equilibrium state it remains
to show that h,(S) + [ fdpu > Pop(f).

Most of the rest of this section is devoted to the proof of this inequality. We
will have to control certain conditional entropies. This is achieved in a preceding
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series of lemmata. Then, in a final step, all these estimates are put together to
show the above inequality.

We start with the following useful fact; the special case d = 1 is the trivial
part of [W1, Lemma 9.9].

LEMMA 4.3: Let p be a discrete probability measure on a countable (possibly
finite) set Y with p{z) > 0 for allz € Y and g: Y — R a p-integrable function
with Z(g) :== ) cy e9) < co. Ifd > 1 is a constant such that p(x)/p(y) <
d-e9® [e5W) for all z,y € Y, then

|H(p) — (log Z(g) — /gdp)! < logd.

Proof: By assumption p(x)ed® < de9)p(y) for all z,y. Summation over y
yields p(z)/d < e9%%) /Z(g) for all . Summation over z yields d-p(y) > 9% /Z(g)
for all y. Now

/ gdp—log Z(g) = > g()p(x) — Y _(log Z(g))p(=)

x

= Y oter s (f75)

Similarly [ gdp —log Z(g) < —H(p) + logd. ]

Let /3 be the zero partition of X, that is the partition elements are the sets
[iJlo = {z € X|zg =i}. Let B(n) = BVSTIBVS2FV . .- v S~ (=13 be the
partition into cylinders of length n.

Now let vy, i, be defined as in Theorem 4.2 (b). Since p, is good, we have
hy., (S)+ [ fdpn < Piop(f) < oo by the Variational Principle, Theorem 2.4. This
shows that f has finite integral with respect to p,. Since Stv, < n- i, fdeiVn
is finite for all i. Thus 1/n- [ S, fdv, = [ fdu,.

LEMMA 4.4: (1/n)-H, (B(n))+ [ fdpn, = (1/n) -log Z, .
Proof: Let Y = supp(vn),g9 = Spnf.d =1 and p(z) = v, (z). Then H,_ (8(n)) =
log Zp 1, — [ Sufdv, by Lemma 4.3. Now use 1/n- [ S, fdv, = [ fdpn. ]

Suppose that i is a weak accumulation point of the p,. To estimate h,(S)
from below it might be impossible to use the zero-partition 3, since it might
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have infinite entropy with respect to p. Instead we will use some suitable finite
partitions. Whatever partitions we are going to use, the next lemma gives an
estimate that links to the quantity 1/n - H,, (8(n)) controlled above.

LeEMMA 4.5: Let o be some finite partition of X into closed-open sets. Let ¢ > 0.
Suppose that p is a weak limit of a subsequence ;. Then h,(S) > h,(o;S)
and h,(a; S) > (1/n)H,, (B(n)) — (1/n)H,,, (B(n)|a(n)) — 2¢ for all large enough
n € {n;|i € N}L

Proof:
hu(8) > hu(a; S) since « is finite

1
> aH u(a(q)) — ¢ for ¢ large enough (supposed to be fixed from now on)

1
> EH 4. (@(q)) — 2¢ by weak convergence for large enough n = n; > ¢

1
> ;Hun (a(n)) — 2¢ since n > ¢ and by (W1, Thm. 4.10]
n—1
i
> 3 Z Hgi,, (a(n)) — 2e by [W1, the remark following Thm. 7.1].
i=0

Since v, is supported on points of period n one obtains Hg:,, (a(n)) = H,, (a(n))
for all ¢ and H, (B(n)V a(n)) = H,, (A(n)), thus the above equals

LH, (a(n)) -2
n

1 1 1

=~ H,, (@(0) + = Hy, (B(0)) = - H, (8(n) V a(m) = 26
1 1

= EHV" (ﬁ(n)) - EHV,, (ﬂ(n)|a(n)) — 2e. L]

We have to find a finite partition o that gives us sufficient control over
(1/n)H,, (B(n)|a(n)). Again, the first idea might be to use some clustering of
the zero-partition 5. But with such a choice we were not able to obtain the
crucial entropy estimate in Lemma 4.8. However, it turns out that a partition
oy, defined by a suitable finite set of return loops L works fine.

For that, suppose L is a finite set of first return loops at vertex a {not to be
confused with the sequence L, already chosen in Theorem 4.2). Let o = ay
be the partition of X into the sets R(w,i) := {z € Xl|z[—i,—i + |w|) = w},
w € L, 0< i< |w]and the “bad” set B =X = U,er Us<iciw B(W,9)-

For n € Nlet a(n) = aVS~tavS—2aVv---vS~ (" Ya. For an atom P € a(n)
let m(P) denote the number of times a point & € P visits the set B; thus
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m(P) = S,1g(x) for all z € P. Finally, note that the function f& := f.1p is
continnous since B is closed open.

Let D := sup,, D,(f) and C := exp(D). Fix some constant M with C < M <
oo and (1/n)log Z, < M for all n. Such M exists since (1/n)log Z, converges
t0 Prop(f) < 00 and Z,, < oo for all n.

LEMMA 4.6: For every P € a(n) with v, (P) > 0 we have

log ( > exp(SnfBa:)) <m(P)-(D+ M).
ze€PNP(n,a,Ly)
Proof: The statement holds trivially if m{P) = 0. Now assume m(P) > 0. Let
x € PN P(n,a,Ly,). If I is a maximal subinterval of [0,n — 1] such that S¥z ¢ B
for all k € I, then x|; is a loop at vertex a. If [0,n — 1] has k such maximal
subintervals, say Iy, ..., i, then the sum of their lengths is m(P). Thus there is
Yz € P(m(P),a) with y,[0,m(P) — 1] = z|;, ---2|1,. Thus for each 1 <1 < k
we have |37, Sa — sel mn Siyz| < D where a(l) = 0if [ = 1 and else

j=a
a(l) = ||+ -+ + |[1—1| and b(l) = || + - - - + |[;] = 1. Therefore
m(P)—1
| > Siz— Y Siy|<k-D<m(P)-D.
jeu =0

Thus we obtain |S, f2x — Sp.(p) fyz| < m(P) - D and

> exp(Saffa) < > exp(Sm(p)fye + m(P)- D)
z€PNP(n,a,Ly) r€PNP(n,a,Ly)

S exp(m(P) . D)Zm(P)
Since log Z,(py < M - m(P) the result follows. |

LEMMA 4.7: For every P € a(n) with v,(P) > 0 we have

Hun(,|p)(,6(n))glog< > exp(Snfo)>—/Sndevn(.|P)+2m(P)~D.

x€PNP(n,a,Ly)
Proof: The statement is true if m(P) = 0. Now assume that m(P) > 0. Let
Y = supp(v,,(-|P)), p(x) = vn(x|P) and g(x) = S, fBx. Then g is p-integrable,
since |S, fB] < 32770 |0 7| and each |f 0 S| is integrable with respect to v, as
already observed above. Moreover, Z(g) < oo by Lemma 4.6. Now

p(x) _ valz) _ exp(Snfz)
p(y)  waly)  exp(Snfy)

= exp(Snfm = Sufy)

e9(2)
< exp(Suf P = S fBy + 2m(P) - D) = PP
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where the inequality holds, since Siz € B iff S’y € B and for every maximal
subinterval [i,3] of [0,n — 1] with S*z ¢ B for all i < k < j,z € P we have
|Ei:if(8'kx) ~ f(S8*y)| < Dj_ix1(f) < D and there are at most m(P) + 1 <
2m(P) such intervals. Thus Lemma 4.3 applies and the result foliows. 1

Combining the last two results gives the crucial estimate.

LEMMA 4.8: For each n we have

o Ho (Bla(n)) < (3D + M) - n(B) = [ £din,

Proof: By Lemma 4.6 and Lemma 4.7 for every P € a(n) with v,(P) > 0 we
have

H,, (1) (B(n)) < m(P) - (3D + M) - / SufBdun(P).

Thus
% - H, (B(n)|a(n)) = % -EP;I/”(P) - H,,(1p)(B(n))
g% §P: w(P) - [m(P) - (3D + M) — /S‘ fPdva(1P)]
:_/%-sndeyn+(3D+M)/;-Snlsdvn
—~ [ 1%dun + 3D+ Mo (B).
This proves the lemma. i

Proof of Theorem 4.2(b) (continued): Recall that p € A is the weak limit of
the subsequence i, and [ f~du < oo. First note that f has finite y-integral
since the assumption Py, (f) < oo and the Variational Principle imply [ f*dp <
Bop(f)+ff_dﬂ < o0.

Now let ¢ > 0. For all n large enough we have —1/n -logy < /2 and, by
Theorem 1.9, 1/n -log Z, > Pigp(f) — €/2. Thus Lemma 4.4 and the condition
Zn,L, 2 VZn imply

VHLB0) + [ fdin 2 Paplf) - .

Using Lemma 4.5 and the last inequality shows for all n = n; large enough that

+ [ Fdun + 5 - H (Bln)la(n)) 2 Pyl ) = 3.
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By Lemma 4.8, with f& = f — fB, we obtain

hM(S) +/deﬂm > Ptop(f) — 83~ (3D+ M) - pn,(B)

for all n; large enough.

According to Theorem 3.10 there is an N with p,{z|i(xs) # a for 0 < s <
N} < &?/4 for all n. This implies u,({z[j, k] is a first return loop for some
-N <j <0<k <N} 2> po({z|i(z;) = i(zx) = a for some —N < 5 <0
and 1 <k < N+1}) > 1-¢2/2 for all n. So there is a finite set L of first
return loops at a such that u,(B) < ¢ for all n, where B denotes the bad set of
the partition a = «y, as defined above. Since B is closed open and p is a weak
accumulation point of the p,, also u(B) < . Enlarging the set L if necessary
we may assume that [1pg|f|dp < ¢, since [|f|dp < co. Since L is a finite set,
B¢ is a finite union of cylinder sets, thus the function f¢ = f — fB is continuous
and f%(z) = 0 if x € B. Moreover, since D(f) < oo, f€ is a bounded function.
Thus | fCdun, — f fYdy. This convergence and p,(B) < & implies

hu(8)+ [ 192 Piy(f) = 3¢ — (3D + M) .
Finally, | [ fBdp| < e shows that
hu(S)+ [ iz Puy() =42 = (3D + M) -,

With & — 0 this shows that h,(S) + [ fdu > Piop(f). ]

The following is an example of a function f which satisfies all conditions of
Theorem 4.2, but has no equilibrium state. Thus it can actually happen that for
every tight sequence of good measures as in Theorem 4.2 the set of accumulation
points of the p, is disjoint from the set of good measures of f. For a positive
result see Section 7, where we apply Theorem 4.2(c) to the Gauss map.

Example 4.9 (inspired by [GS]): Let (X, S) be the Bernoulli shift in graph pre-
sentation with a unique vertex. Let (a;)ien be a sequence with a; > 0 for all
i,y .,0; =1and — 3. q;-loga; = co. Define f: X — R by fz =loga; if 29 = 1.
Then

n—1
Ly = Z exp(loga;, +---+loga;,_,) = Z H a;, = 1.
10y ertn—1EN T yeens in—1 k=0

Thus Piop(f) = 0 and Z; = 0 for all n > 1 implies that f is Z-recurrent.
We show now that f has no equilibrium state. Consider a good measure pu
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for f. Let p; := p([f]o) and let m denote the Bernoulli measure on X with
m([t]o) = p; for each i. Since p is good and f is constant on each set [i]o we
obtain — Y, p; - loga; = [ f~dm = [ f~du < co. Thus m is good for f, too.
For N € N consider the partition oy consisting of the sets [¢]p,i < N and the
set U;snlilo- Then Hy(an(n)) < n- Hy(an) = n- Hn(an) = Hy(an(n))
and thus h,(an;S) < hm(an;S) for all N. Therefore h,(S) < hn(S). Since
[ f~dm = [ f~dp, and since m is good for f, we obtain from the Variational
Principle, Theorem 2.4 that

h#(S)+/fdu§hm(S)+/fdePtop(f)=0.

Thus h,,(S) = =3, pilogp; < oo and — >, pilogp; + 3, pi - loga; = hy(S) +
J fdm <0 =1log(}_,; a;). Since by assumption — >, a; - log a; = oo, this implies
pi # a; for some i and hi, (S)+ [ fdm < 0 ((W1, Lemma 9.9, with a; replaced by
log a;], which holds for countable probability vectors with — ) . p; logp; < oo and
— 3. pi-loga; < 00). Thus h,(S)+ [ fdi < Piop(f) and p is not an equilibrium
state for f. |

Remark 4.10: In certain special cases (including the Bernoulli shift) more ele-
mentary constructions of equilibrium states are possible. We would like to sketch
a result, but we will not go into details, since the proofs, although more elemen-
tary, are certainly less elegant than the one given above (and we even need
stronger conditions than in Theorem 4.2). The main idea is to consider, for
a fixed vertex a, the following collection of subsets of X (by Theorem 3.10 it
will be an almost sure partition with respect to all measures under consider-
ation). For every first return loop w at vertex a and every 0 < ¢ < |w| let
R(w, i) := {x € X|z[~i,—i + |w|) = w}. Let a denote the collection of all these
disjoint sets R(w, ). Let w™ denote the point & € Per,(S) with z[0, |w|) = w.
Define a vector p = (pr)rco by

_ exp(Spfw™)
Ri=—— ——

for R = R(w, ) € & with & = |w|.
Zk

One interesting feature is that f is Z-recurrent at vertex a iff > Rea PR < 00
This is a simple calculation:

> g xp( Sy fw™>
Y=Y X Y =k 3y SO

REa k=1w,|w|=k 0<i<k =1 w,|w|=k
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If f satisfies the conditions of Theorem 4.2 and if additionally

sup f < 00, sup/f_dun <oo and H(p):=- ZpRlngR < 00,
Rea

where the p, are defined with L, equal to the set of all loops (for all n), then
one can show that H,(a) < oo, thus k,(S) > h,(o; S). This can be used to show
that any weak accumulation point of the yu, is an equilibrium state for f. It can
be shown that the above conditions are satisfied for any continuous function f
with sup,, Dy (f) < 00, Piop(f) < co,sup f < oo,sup [ f~du, < oo defined on a
mixing Markov shift {X,8) given by a graph presentation such that there is a
vertex a and a number K € N such that |w| < K for all first return loops w at a.

5. One-sided Markov shifts

Let G = (V, F) be a countable strongly connected directed graph. Let (X', S’)
be the transitive one-sided Markov shift defined by G, i.e.,

X' = {2’ = (2!) € BN t(z,) = i(zpq1) for all n > 0},

where ¢t and 7 denote the terminal and initial vertex maps. Let f": X' — R be
a continuous function. Let the topological pressure of f’ be defined by the same
formula as in the two-sided case, see Definition 1.2. Theorem 1.9 holds in the
one-sided case, too. The definition of the distortion (Definition 1.3) as well as
the definition of good measures (Definition 2.1) carry over.

Let (X, S) be the transitive two-sided Markov shift given by G. Let m: X — X’
be defined by 7(x) = (n)n>0, Where = (z,)nez. Then 7 is continuous, onto,
and 7S = S'7. Let f: X — R be defined by f = f'r. We call (X, S) and f the
two-sided version of (X', S’) and f’. Note that D,(f) = D, (f’) for all n.

THEOREM 5.1 (Variational Principle for one-sided Markov shifts): Let (X', S’)
be a one-sided transitive Markov shift and let f': X' — R be a function with
D, (f"Y/n 0. Then

PtOp(f/v Sl) = Pmeasure(flv S/)

Proof: Let (X, S) and f be the two-sided version of (X’,S’) and f’. For any
vertex e the map 7 induces a bijection between Perg(n,a) and Perg/{n, a), thus
Piop(f',S") = Piop(f,S). Since D, (f) = D,(f’) for all n, by Theorem 2.4 it
remains to show that Ppeqsure(f', S") = Prneasure(f, S). Given a good measure
p for f on let ' = 7y denote its image under 7. Then S’y = 4 and obviously
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hy(S) = hy(S'). Now f~ = (f')” o implies that p’ is a good measure for f’
and that [ fdu = [ f'dy/. Thus h,(S)+ [ fdu = hy(S') + [ f'di’. On the
other hand, the Kolmogoroff consistency theorem shows that for any measure p/
on X’ which is good for f’ there is a unique S-invariant measure p on X with
p{z € X|zn = o, .., Tnym = am} = @' ({2’ € X'|ay = ao,..., 2, = ap} for
every ag,...,am € E;m > 0,n € Z. Again f~ = (f')” o« implies that u is a
good measure for f. Since p' = wu the above reasoning shows h,(S) + [ fdu =
h, (S)+ [ f'dy'. Taking the suprema over all good measures on both sides gives
Pmeasure(fl, S,) = Pmeasure(fﬂ S) |

COROLLARY 5.2: Let (X', 5") be a one-sided transitive Markov shift and let
f': X’ = R be a continuous function. Let (X, S) and f be the two-sided version
of (X',S") and f'. Then f has an equilibrium state iff f' has an equilibrium
state.

Proof: This follows from the proof of Theorem 5.1. [

Thus, with the obvious notion of Z-recurrence Theorems 4.2 applies in the
one-sided setting, too.

6. The distortion properties

This section provides estimates for the distortions D,(f) via the so-called varia-
tions V,,(f) of f. In particular, the commonly used condition of Hélder continuity
implies sup,, Dn(f) < co. However, we give an example where our theorems ap-
ply but f is not Holder continuous and not even uniformly continuous, that is
Vo (f) does not converge to 0. This is meant to illustrate the fact that our results
apply to a wider class of functions.

Definition 6.1: 'The nth variation of f is
Va(f) = sup{|fz — fyl|z[-n,n] = y[-n,n]}.

Note that V,y1(f) < Va(f) and Vo(f) = Di(f). Clearly V,,(f) — 0 iff f is
uniformly continuous with respect to the standard metric

d(z,y) = 2~ min{InllenFyn neL}

whenever z,y € X,z # y.
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PROPOSITION 6.2: Let (X, S) be a transitive Markov shift and let f: X — R be
a continuous function. Then

(@) Dn(f)<2-Y)_ Vi(f),

i=0
(b) Vo(f) <00, Vu(f) = 0= D,(f) < oo for all n and D,(f)/n — 0,

(€) D _Vilf) < 00 = sup Dn(f) < oc.
=0 "
Proof: (a) Consider z,y € X with z[0,n) = y[0,n). For0 <i < nlet k = k(i) =
min(i, (n — 1) —4); then Stz[—k, k] = S'y[—k, k] and thus |fSiz — fSiy| < Vi(f).
Thus we have

n—1 n—1 n—1
|Snfa = Sufyl < Y 1Sz — £S'Y <D Vi (F) <2 Vi(f).
i=0 =0 i=0
Given (a) the remaining results are straightforward. |

A function f is Holder continuous iff there are M > 0 and A < 1 such that
Va(f) < MA™ for all n > 0.

Observation 6.3: The above proposition shows that Holder continuous functions
satisfy sup,, D, (f) < oo.

We give an example where our theorems apply — the function f has an equi-
librium state by Theorem 4.2(d), since it is Z-recurrent and bounded from below

— but f is not Holder continuous and not even uniformly continuous, since
Vo (f) = 2 for all n.

Example 6.4: A mixing locally compact Markov shift (X, S) and a continuous Z-
recurrent function f: X — {—1,0,1} with P,op(f) < 00 and Vo—1(f) = Dn(f) =
2 for all n > 1. Let G be the graph with vertex set V = Z and edges as follows:

e there are two edges, say ¢ and d, from vertex 0 to vertex 1,

e there is an edge e, from vertex n to vertex n+1,n > 1,

e there is an edge b, from vertex n to vertex n+1,n < —1,

e there is an edge a,, from vertex (2n + 1) to vertex —(2n +1),n > 1.
Let (X, S) be the Markov shift defined by G. Then X is locally compact and S
is mixing. Define f: X — {—1,0,1} as follows. Let x € X.

o If xp ¢ {e,|n > 1}, then let f(z) = 0.

o If x5 = e,, then let f(z) = (-1)* if z_, = c and let f(z) = (~1)"*! if

r_, =d.
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The map is continuous, since f(z) depends only on z[—n, 0] for some n = n(zx) >
0. Since f has values in {-1,0,1},V,(f) < 2 for all n. Now let n > 0. Then
consider z,y € X with 2y = epqy146 = Y for 0 < k < n,2_,,1 = ¢ and
Y-n—1 = d. Then z[-n,n] = y[-n,n] and |fz — fy| = 2. Thus V,(f) = 2
for all n > 0. Now we determine D,(f). Consider x € X such that z[0, %] is
a first return loop at vertex 0. Then x[1,k] = e1---e2nanb_(2p41)---b_y for
some n > 1. Thus Sy f(x) = Yo, F(S'x) = 0. Now consider z,y € X with
x[0,n) = y{0,n) and a unique 0 < k < n with z € {¢,d}. Then |Sifz|, |Skfy| <
1 and fS'z = fS%,k < i < n, thus |S,fz — S,fy| < 2. Combining these two
cases shows D, (f) < 2 for all n. Let 2,y with z[0,n) = y[0,n) and zo = yo =
€9n,T1 = Y1 = an and x_s, = ¢,y_2, = d; then |S,fz — S, fy| = 2 and thus
Dn(f) =2

Let a denote the vertex 0. Since for # € Per(n,a) we have S, fz = 0, then
we get Zn(f,a) = #P(n,a) < oo for all n and Piop(f) = he(S) < log2 < oo.
Furthermore, Z*(f,a) = 2if n = 4k+3,k > 1, and Z(f,a) = 0 otherwise. Since
#P(n,a) grows exponentially in n, we get that > nZ}(f,a)/Z,(f.a) < oc.
Thus f is Z-recurrent at a.

7. An application: the Gauss map

Although the results we present here are mainly well known, we have chosen
this example to illustrate how easily our theorems apply. With ¥ := (0,1) - Q
let T:' Y — Y be the Gauss map Tz := 1/z — [1/z], where [y] := max{n €
Z|n < y}. Then T is a countable-to-1 surjective map. For every x € Y there is
a unique k& > 1 such that € (1/(k + 1),1/k), so the map T is differentiable.
We will compute the topological pressure of the potential ¢: ¥ — R defined
by ¢(r) = —log|T'(z)| and we show that there is an equilibrium state p of
¢. We should mention P. Walters’ work [W2] where the Gauss measure was
characterized as the unique equilibrium state for —log|T”| in his sense and his
method used the Ruelle—Perron—Frobenius operator. The new feature is that we
characterize the Gauss measure as a limiting measure obtained from measures
supported on periodic points.
The next proposition is well known, and we omit the proof.

PROPOSITION 7.1: There is a topological conjugacy 7: NNY{0} — ¥V from the
one-sided Bernoulli shift (NYV{°}, §) to the dynamical system (Y, T) defined by
the Gauss map. The map 7 is uniformly continuous w.r.t. the standard metric
on NY10} and the Euclidian metric on'Y.

Now let S denote the two-sided full Bernoulli shift, which means S is the left
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shift map on N% and we consider this shift as given in graph presentation with
a single vertex. A factor map 7 from S onto the one-sided shift S’ is given by
7z = (Zo,Z1,...). Now consider the function

f: N2 5 Rgiven by f = érr  where ¢(y) = —log |T'(y)], y € Y.

On a partition set Qr = Y N (1/(k + 1),1/k) we have Ty = 1/y — k, thus
T'y = —1/y? and ¢y = 2logy on Qx. Thus in particular f < 0. Elementary
calculations show

CraM: For each n > 0 we have V,,(f) < 8-27". Thus f is Hélder continuous
(see Section 7 for definitions), in particular sup,, D, (f) < oo.

We check that Py, (f) = 0. By the above we have C := exp(sup,, D, (f)) < oc.
Let a be the unique vertex in the graph presentation of NZ.
For ai,...,an, € Nlet [a1,...,a,) :=1/(a1 +1/(a2+ --- +1/ay))---). Then

[a1,...,an-1,a,] and [a1,...,an_1,a, + 1] are the two endpoints of the interval
A(aq,...,a,) which is the closure of {y € Y|a(T'y) = a;,1 < i < n} in [0, 1].
Let rn(aq,...,a,) :== [1}=, @, ait1, ..., ay). A simple calculation shows
Afa1, ..., an)| =llar,...,an_1,8,) = a1, ..., an_1,an + 1]
=|laz,....an_1,8,] — [a2,...,Qn_1,0, + 1]|
ety van—1,an] - [ary - oy @no1,an + 1]

By induction one obtains
|Aaty ... an)| =Tnlar, . oy@no1,an + 1) - rplag, ..., an_1,a,).

Note that by definition exp(S,f2) = [[7—y (T%(r7z))? for all = € NE.

Consider z = (2;) € P(n,a); then 772 € A(2y,...,2,). Choose a sequence of
points =¥ € N such that 7m2* € A(zy, ..., 2,) and 7mwz* converges to [z, ..., zn].
Then

—10gC < Sufz— Snf2F <logC = C~1 < nf’fp(*?"fz) <C forall k.
[y (Ti(rm=*))?

Since H;:Ol (T (rmz¥) converges to 7,(z1, ..., 2,) we obtain

o1 < exp(S, f2) <C
T orp(z,.,20)2 T

Now let the z* converge to [21,...,2n_1, 2, + 1]; this gives

o< exp(Sy fz) <C

(210 oy 2ne1. 20 + )%
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The root of the product of these two estimates becomes
L A(z1y e 20)| < exp(Snfz) S C - |A(21, - -1 20)]-

Since Z,(f,a) = 3_,cp(n.a) ©XP(Sn f2) and since the [A(zy,...,2,)| add up to 1,
we obtain C~! < Z,,(f,a) < C. This implies P,,(f,a) = 0.

Since Z7(f,a) = Zi(f,a) and Z:(f,a) = 0 for n > 1, we get that f is Z-
recurrent. Since vy :=1/Zp"3 ¢ p(n,q) €XP(Snf2) 8, and py :=1/n DI ! Sy,
we have pu, = v, in the present case and

C4

. a1 Mo —
{z€X]o=N}H<C Z-exp(f(Noo))Sm with M := 7

By Lemma 3.8, we obtain

[ < Sl (ellio = N} n(fz € Wlaa = )

<ZM 21og N+1).

Thus sup [ f~du, < oo and, by Theorem 4.2(c), any weak accumulation point
of the tight sequence p., is an equilibrium state for f. Now let p, = 7mp,. We
claim that p,, converges weakly to the Gauss measure m. By Theorem 4.2(c) the
sequence p, contains a subsequence p,, that converges weakly to a probability
measure p and g is an equilibrium state for f. Thus, since 7,7 are continuous,
Pn, — T weakly. The proof of Theorem 5.1 shows that 7 is an equilibrium
state for f' = ¢7. Since 7 is a conjugacy, Twu is an equilibrium state for ¢. It
is well known that the Gauss measure m is the unique equilibrium state for ¢,
thus pp,, — m weakly. The above argument applied to a subsequence ji; of the
ptn shows that px, contains a subsequence py, ,, that converges weakly to m, thus
the whole sequence p, converges weakly to m. Hence the Gauss measure has
been obtained as a weak limit of a sequence of measures which are supported on
periodic points. |

8. Defining pressure via all periodic points

In Definition 1.2 of topological pressure only periodic points that visit a fixed
vertex a are used. Are there classes of Markov shifts where one can use all periodic
points when defining pressure? This is certainly not true in general; there are
simple examples of Markov shifts with finite entropy and an infinite number of
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fixed points, thus one cannot use all periodic points to compute P,,p,(0). But
the answer is positive for so-called finite-range systems; see Proposition 8.1. A
natural weaker condition is the specification property, i.e., when there is some N
such that for every pair of vertices a and b there is a path of length N from a to
b. However, if the graph has specification and even if the function depends only
on the zero-coordinate, using all periodic points might not give the topological
pressure (Example 8.2).

PROPOSITION 8.1: Suppose (X, S) is a mixing Markov shift given by a graph G
with vertex set V and f: X — R is a continuous function with Po,(f) < 0o and
D,(f)/n—0. Let Z{(n) = Z(n, f) = Zzepern(S) exp(Snfz). Suppose that V is
finite. Then Piop(f) = lim(1/n) log Z(n).

Proof: Note that Z(n) = Y_ . Zn(f,a) since Per,(S) = |J,cy P(n,a) by defi-
nition. We know that P;,,(f) = lim(1/n)log Z,(f,a) for all @ € V by Theorem
1.9. Let £ be the cardinality of V. For each n there is an @ € V such that
Z(n) < kZ,(f.a). Let ag be some fixed vertex. Then (1/n)log Z,(f,ao) <
(1/n)log Z(n) < maxaey (1/n)logkZ,(f,a) for all n, and the bounds converge
to Piop(f). |

Example 8.2: A mixing Markov shift (X,S) such that between any pair of
vertices there is a path of length 2, a continuous function f: X — R such that
Va(f) =0foralln > 0, Pop(f) < o0, f is Z-recurrent but ZwEPern(S) exp(S, fx)
= oo for all n. Thus the pressure cannot be calculated by considering all periodic
points.
Let the Markov shift be given by the graph G with vertex set V = NU {0} and

for each k > 1 there is

e an edge a; from vertex 0 to vertex k,

e an edge by from vertex k to vertex k,

o an edge ci from vertex k to vertex 0.
Let x € X and k > 1 such that xo € {ak, bk, cx}-

o If xg = ay, then let f(z) = 2log %
o If 2o = by, or zg = ¢ then let f(z) = 1 - log 1.

This defines a continuous function f: X — R with V,,(f) = 0 for all n > 0. Thus,
by Proposition 6.2 and Theorem 1.9, we have that

Piop(f) = nli}lgo(l/n) -log Z,(f,0).
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Let i(e) denote the initial vertex of an edge e. First note that if z € P*(n,0) =
{z € Per,(S)|i(z0) = 0,i(x) # 0 for 1 < k < n} and xo = ay, then S, fz =
2log(1/k) + (n — 1) - (1/k) - log(1/k) < 2log(1/k). Thus if z € P(n,0) = {z €
Per,(S)|i(xo) = 0}, then z[0,n) can be decomposed into the first return loops
at vertex 0, say z[0,n) = z[0,41)z[i1,%2) - - - x[is_1,15) with i = 0,4, = n and
1<s5<n,and if xo = ay,,...,z;,_, = ak, then

w@ﬂ%w%zﬂm) HH
Thus

L0y ¥ ZZHH

s=10=ip<i; <.. <z,,,—n(kl7 Lks)i=1 "7

-y ¥ s

$=10=ig <41 <...<iz=n j=1 k=1

SZ Z M” WhereM:=ik—12

3=10=19<%1<...<ig=n k=1
< M™-2M
Thus we get Piop(f) < log(2M) < 0.
To see that f is Z-recurrent first note that, for all n > 2,

Zf,0) = Zexp(Qlog +(n— 1) log ) Z o
k=1
Thus it suffices to show that Z,(f,0) grows exponentially. By Proposition 1.8
we have Piop(f) > Pin(f) > P(fly) where Y is the SFT defined by the finite
graph with the edges a1,b1,¢;. Note that fly = 0. Thus P(f|y) equals the
topological entropy of Y. Since Y is mixing and non-trivial, clearly P(f]y) > 0
and Z,(f,0) > Z,(f|y,0) grows exponentially. Thus ) n-Z;/Z, < co and f
is Z-recurrent at vertex 0.
Finally, we show that 3 zEPer 5)€xp(Sn fz) = 00. Since Per,(S) contains the

fixed points z* defined by (2*); = bk for all i € Z, one calculates
Z exp(Snfz) > Z xp(— log ) 0.
z€Per, (5) k=1

There is no such example with #V = oo and f bounded from below, since in
this case #P(2N,a) = oo and this trivially implies Py, (f) = lim1/nlogZ(n)
= 0Q.
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